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1 Introduction

Constructive definition of superstring theoryl

A large N reduced model has been proposed as a nonper-
turbative formulation of superstring theory.

(IIB matrix model
N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, hep-th/9612115.

For a review, hep-th/9908038

1 1 9 s 19
S = _—2TTN><N(_ > [Aas Ab]” — ¥ X T[Aq, 9]).
g 4 2 a=0

a,b=0

e A, and ¥ are N X N Hermitian matrices.

* A,: 10-dimensional vectors

* 1): 10-dimensional Majorana-Weyl (i.e. 16-component)
spinors

e This model possesses SU(IN) gauge symmetry and
SO(9,1) Lorentz symmetry.

e Dimensional reduction of N/ = 1 10-dimensional SYM
to 0 dimension.

e Matrix regularization of the Green-Schwarz action of
type IIB superstring theory.



e N = 2 SUSY: This theory must contain spin-2 gravi-
tons if it admits massless particles.

* homogeneous : §V A, = iel 1, Wy = %I‘ab[Aa, Aple.
* inhomogeneous : 5§2)Aa =0, (Séz)v,b = &.
* We obtain the following commutation relations:
(1) [5(1) 5(1)]Aa, — 0, [5(1) 5(1)]¢ =0,
(2) [08),08)140 = 0, [88, 681w = o,
(3) [0, 6014, = —ieTq¢, (61,614 = 0.
We take the following linear combination
6 = M) 4 5@ §2) — i(6M — (),

This gives a shift of the bosonic variables: (a,3 = 1,2)

[géa)a géﬁ)]iﬂ =0,
6,674, = —2i6°PeT .¢.

— Therefore, the large N matrices A,, per se, repre-
sent the spacetime coordinate.



Is it possible to formulate a matrix model
which describes the gravitational inter-
action more manifestly?

Can a matrix model describe the physics in the curved
space”?

e How is the local Lorentz invariance realized in the
matrix model?

e Does a matrix model reduce to the (type IIB) super-
gravity in the low-energy limit?

(IIB) Matrix Model
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2 DMatrix as differential operator

We identify infinitely large IN matrices with differential
operator.

The information of spacetime can be embedded to ma-
trices in various ways.

e Twisted Eguchi-Kawai(TEK) model:

A. Gonzalez-Arroyo and M. Okawa, Phys. Rev. D 27, 2397 (1983).
A. Gonzalez-Arroyo and C. P. Korthals Altes, Phys. Lett. B 131, 396 (1983).

A, ~ 0, + a,.

The matrices A, represent the covariant derivative
on the spacetime.

e IIB matrix model:
A, ~ X,.
A, itself represent the space-time coordinate.
IIB matrix model with noncommutative background
[Pas Pb] = ©Bgp, (Bep = real c-numbers)

interpolates these two pictures.
H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, hep-th/9908141

TrynyNpT¢[A,, 1] reduces to the fermionic action
[ dixap(x)il (91 (x) + [ai(x), 1 (x)]) in the flat space in
the low-energy limit.



e A differential operator acts on a field in the curved
space naturally.

e The space of the large N matrices includes the differ-
ential operators on an arbitrary spin bundle over an
arbitrary manifold simultaneously.

space of differential operators
on bundle 2

space of differential operators
on bundle 1

Space of large—N matrice



[Attempts for a matrix model with local Lorentz invariance]

The fermionic action in the curved space:
Sr = /ddwe(w)tﬁ(w)ifaeai(aj) (Oip(x)
HA@), (@) + T el (@)
e a,b,c,- - : indices of the 10-dimensional Minkowskian spacetime.
i, k, ---: indices of the 10-dimensional curved spacetime.

The correspondence between the matrix model and the
continuum limit:

TTNxN — /dda},

b — U(z) = ei(x)y(z),

spinor root density
[Aa, ] — iex(z)e,(@)(i + [Ai(@), T)e (),
{Aalazaga";b} — e[alz(w)wiazag](w)w(w)

anti-commutator & product

The rank-3 matrices correspond to the spin connection!



Commutation relations of (anti)-hermitian operators:

()[h1,hs] € A, (2)[hya] € H, (3)[a1,as] € A,
(4){h1, ho} € H, (5){h,a} € A, (6){ar, az} € H.

e Hermitian matrices:
H={M € MNxN(C)|MT = M}. h,hihy € H.

e Anti-hermitian matrices :
A ={M € Mnyn(C)|M' = —M}. a,a;,a; € A.

[Proof of (4)] {h1, ho}' = (hihs + hohy)t = BRI + RIRY = {hy, hs}.

Notation of the gamma matrices:
{T*,T°} = 2n**, where *® = diag(—1,+1,---,+1),
We take the gamma matrices to be real:

a\T —— (Tpay __ -1 (a:O)
(FV—(F)_{+W(a=L%~w%'

C = (charge conjugation) = I'°, T%(I'*)'r° =17



Sr = [d'z¥(z)e (z)il e, (x) {8;(e 73 (2) ¥ ()
HAi@), e 3 @) B(@)] + [T wie(2)e (@) ¥(x) |
J Te e, ; lei T)Wjeq (T
— /dda:{\I'(a:)zI‘ ed (@)0i + e (@)wiea ()

t+ea'(w)er (2)(Bie 3 (2))| ¥(z)
+i¥ (2)0"e,’ (2)[Ai(), ¥ (2)]

)T, ()i (2)¥(0)

* / diz (¥ (z)il"e," () (8; ¥ (z) + [Ai(z), T(x)])

)T, ()i (2)0(2)

In =, we have utilized the following relationship
(when ¥(x) is Majorana):

()l ¥(z) = (P(2)I*¥(z))" = —¥'(2)(T*)"(T°) ¥ (2)
= —Ui(z)I°T%(r4)ir)w(z) = —v(z)r*w(z) = 0.

The corresponding matrix model is
1 Ta i abc
Sr & ETT@bI‘ [Aa) ¢] + §¢F {Aabm '(p}
— TT("ZI‘aAan + i"EI‘alaza?’Aalaza?f‘p)'

Proof of the equality (only for the boson, when v is Majorana):
1 _ 1_
STT (W [Aa, ¥]) = ST Ay T (E4]t7, 1))
1_
= EszI‘aAfv,bCTr(tAtBtC — tCtPt)

= %(&AraAaBtpC — YT AP Tr (t4PtC) = Tr(PT*Aqvp).



[Local Lorentz transformation and the ”gauged” model}

The symmetry of IIB matrix model:
SO(9,1) and U(N) symmetry is decoupled.
The SO(9,1) x U(IN) symmetry is a tensor product of the
group. For ¢ € so(9,1) and u € u(N),

exp(C®1—|—1®u):eC®e“’.

The spacetime coordinate is embedded in the eigenval-
ues of the large N matrices.

— If we are to formulate a matrix model with local
Lorentz invariance, the so(9,1) Lorentz symmetry and
the u(INV) gauge symmetry must be unified.

(*) A, B = [The Lie algebras whose bases are {a;}
and {b;}, respectively.]

e A ® B: The space spanned by the basis a; ® b;. This
is not necessarily a closed Lie algebra.

o ARB : The smallest Lie algebra that includes A ® B
as a subset.

The gauge group must close with respect to the com-
mutator

la® A,b® B] :%([a,b]®{A,B}—|—{a,b}®[A,B]).

10



(*) In order to grasp the intuitive image of the unified
tensor product, we consider the following simple example.

su(6) = su(3)Qsu(2).

A?: basis of su(3) (¢ =1,2,---8).
o': basis of su(2) (1 = 1,2, 3).

e \® o' (24 dimensions): The basis of su(3) ® su(2),
which does not constitute a closed Lie algebra.

e \“®1+1®o" (11 dimensions): The generators of the
Lie group SU(3) x SU(2).

o su(3)®su(2) = (su(3)su(2))D(SU(3) X SU(2))aigebra
This is a closed 35-dimensional Lie algebra.

SU(3) x SU(2) is a 11-dimensional Lie group,
while su(3)®su(2) is a 35-dimensional Lie algebra.

11



(Local Lorentz transformation of the matrix model

6/‘70 - Fa1a2€a1a2¢7

instead of §9 = [I'“1“2{e,,,,1} at the cost of the her-
miticity of 1.

At this time, the product A,y does not directly corre-
spond to the covariant derivative (9,¢ (x)+[Ay(x), Y (x)]).

The local Lorentz transformation of the action:
1 |
68, = ZTrq,b[I‘“Aa + 019293 4 oo, T002gy 4 Tap,
However, this action does not close with respect to the
local Lorentz transformation:
[ira1a2a3Aa1a2a3, Fblbzsblbz]

i .
— 5 [Fa1a2a3’ Fblbz]{Aa1a2a39 Eble} + - {Fa1a2a3 Fblbz}[Aa1azaa’ €b1b2]
rank 3 rank 1,5

We need the terms of all odd ranks in order to formu-
late a local Lorentz invariant matrix model.

The algebra of the local Lorentz transformation must
include all the even-rank gamma matrices:

a1a2 blbz /
[T, 4., T €, bz]

1 1
— 2 [Fa1a2 Fb1b2]{€a1a2, eblbz} + = {Fa1a2 Fb1b2}[€a1a2, sblbz]
rank-2 rank- 0, 4

12



3 Attempts for a matrix model related to the type 1IB
supergravity

S = Trnxn[trszxs2V (m?) + Ppmap]

e T'r(tr): the trace for the N x IN(32 X 32) matrices.

e m includes all odd-rank gamma matrices in 10 dimen-
sions:

1
— a ajasa
m = my,JI" + Qmalaza?’r 15283
— i’m Fal"'a7 _|_ lm Fa1°°°a9
7' a1---a7 9' alonnag ,
where mg,...q,, , are hermitian matrices:
in—l

Mayazm-1 = g5 (2n — 1)!t'r('n?,I‘al...azn_l).

m satisfies I'°mT° = m, and the action is hermitian.

We want to identify m with the Dirac operator.

= We introduce D = [(length) '] as an extension of
the Dirac operator.

m = T%D, where T =[(length)]2,
e 1
D = Aara + §Aa1a2a3ra1a2a3 _— 514‘11-”a51—\al...a5
— iA Fal..-a7 _|_ iA Fal"‘ag
7! aji-ary 9! ai+ag .

7 is not an IN-dependent cut-off parameter, but a refer-
ence scale (~ [2).

13



2n—1

v
Aayazm_1 = 33x@n—i)

ferential operators.

tr(DT,,...q,, ,) are hermitian dif-

= They are expanded by the number of the derivatives:

o gk o
Aqyagn_y = Qay-agy_y (:B) + 2_: E{ail te aik? a’(“mzk)al"-aznq (:L')}

- [(length)—1+¥]

a,?(x) is identified with the vielbein e,’(x) in the back-
ground metric.

: 1
D = e%(w) {iea’(w)I“” (&i - EI‘bcwibc(m)ﬂ e_%(:r:)
+ (higher-rank terms) 4+ (higher-derivative terms).

The potential V (m?) is generically V (m?) ~ exp(—(m?)%).
— The damping factor is naturally included in the bosonic
term.

— The trace for the infinitely large N matrices is finite.

1 is a Weyl fermion, but not Majorana.

We need to introduce a damping factor so that the trace
should be finite.

P = (X(«’B) + lgl X(il..fl)(m), 87;1 L. ail)e_(TDz)a,
[(length)]

14



( Local Lorentz invariance]

The action is invariant under the local Lorentz trans-
formation:

dm = [m,e], 69 =ev, Oy = —ipe, where

e = —igp+ —

e All even-rank gamma matrices are necessary for the
local Lorentz transformation algebra to close.

e ¢ satisfies I'’¢'TY = ¢, and thus the commutator
dm = [m, €| actually satisfies I'°(6m)T° = dm.

The invariance under the local Lorentz transformation:
§S = 2Tr[tr(Vi(m?)m[m,e])] + Tr[tr(p[m,elyp)] = 0.

The cyclic property still holds true of the trace for the
large N matrices, if we assume that the coefficients damp
rapidly at infinity:

lim a@), . (z) = lim x@%®)(z) = 0.

[Proof]| After integrating in the action, the following commutator van-
ishes:

Tr([0j, a7y . ap,  (2)])
[ d%ax (x| (0;a1 W)y .0y, ,(x))|z)
= [d(8;a""W) g, .y, (@) (z|2) = 0.

15



[Heat kernel expansion]
The trace of the large N matrices is analyzed through
the heat kernel (Seeley de Witt) expansmn, which is the
expansion around e 7%9" — — e~ ™M,

We seek the answers of the following questions:

e Is my = ¢:I'*9, (the Dirac operator in the flat space)
a classical solution?
(If so, this model cancels the cosmological constant.)

e Which fields are massive and decoupled in the classical
low-energy limit?
If this model is to reduce to the type IIB supergravity,
only the following fields must remain massless:

* even-rank antisymmetric tensor a(i)ial...azn (x)
* dilatino x(z), and gravitino x () (z)

The computation is performed through the Campbell-Baker-Hausdorff
(CBH) formula:

Tr(e~™P") = /ddaz(az|e_7D2|w)

=X ) =AY R ——X )
= Tr |exp | (—=70,0%) + (—7(D? — 8,0%)) | exp | 78,0° | e 7%

CBH

- 1 1
= Tr|exp (Y +o XY+ DX +Y, [X +Y, —X]]

1 X
F X X X Y] e e

Tr (1+Y+1[X Y] 1[X [X, Y]]+1Y2+%[X,Y]2

—|—Y[XY]+ [XY]Y+ ) -X

(wle X |y) = (2;)% exp (—%(w —y*) (" — y")nab> :

’

16




The Laplace transformation of V (u):
V(u) = /Ooo dsg(s)e *".

Then, the bosonic part is expanded as

Tr(trV(m?)] = /OOO dsg(s)Tr[tre P
3 (7 dete)emi)
[(length)]~

d
2 | k=

If m is to be a classical solution,
= The linear terms of the fluctuation around my should
vanish.

e The linear terms of the derivatives vanish after inte-

grating in the action:
[ d%x (8, - - - 8,0, (1)) = 0.

e Only a scalar can constitute a Lorentz invariant linear

term.
— We focus on the following terms:
Qa(ailil"'ilil)(w)l c .A_l(a:).

[(length)]?
must vanish.

—ae(x) € Ao(x)

The coefficients Ay(x), A_;(x), A o(x)--
Then, the cosmological constant / d%x J
(27T)2

also vanishes.

17



Then, the following condition must be satisfied:

- a4
./0 dsg(s)s™ 2 =0, (n=0,—-1,—2,.-+)
- 0.

& [TduV(uw)utt™ =0, (n=-1,0,1,2,---).

(Joo duV (u)u*t = [° dudsg(s)e " u*"! = I'(ex) [§° dsg(s)s™).

V' (u) is chosen as, for example,

g 1
02 1(e " sin u4)

d
Ouz"1

Vo(u) =

The model reduces to the Einstein gravity in the clas-
sical low-energy limit.

e The linear term of the vielbein a,(*(z) vanishes.

e The cross terms a,®(x)ay %) (x) also vanish, due
to the general coordinate invariance.

R(x)
6

———

[(length)]_2 € A (x)

Tr[tre ™77 / d’z gTe(a:) N

V (u) must be chosen so that A, (x) survives in the ac-
tion.

18



(Which fields are massive or massless?)

mass terms: a(il"'i’“)al...azn_l(:I:)a(jl"'jl)al...azn_l(:I:)J,
(length)] 27, A1 ()
kinetic terms:?kla(il"'ik)al...azn_l(:L')Bkza(jl"'jl)al...azn_l(w)J,

[(length)]_4+k+vl € A2_%(w)

e odd-rank antisymmetric tensor a,,....,, ,(x):
Mass terms € A, (x), Kinetic terms € Ay(x).
These fields are generically massive.

e even-rank anti-symmetric tensor a'";,, ..., (x):
Mass terms € Ay(x), Kinetic terms € A, (x).
They may be massless 77

e Higher-spin fields: a), .. () (k = 2,3,--+):
The mass terms and the kinetic terms are absent.
No clue of whether they are massive.

19



(N = 2 SUSY)

The SUSY transformation of the model:

oY

om

2V'(m?)e, 69 = 2V’ (m?),
e + Pe.

SUSY invariance of the action

5.8 = Tr[tr ((2V'(m*)m(e + €)) + P (e + Ye)y
+2ymV’'(m?)e + 2€mV’(m2)¢>] = 0.

Commutator of the SUSY transformation on shell:

In the following, we assume that the Taylor expansion of

V(u) around uw = 0 is possible.

[0, O¢]m = 2[€€ — €€, V'(m?)],
[66, 65]’0# = 29 (Em

m
2 2

Vim) —VI(0) o Vi(m?) - Vo).

20



In order to see the structure of the N/ = 2 SUSY, we
separate the SUSY parameters into the hermitian and the
antihermitian parts as

€ =€ +te3, & =& + 1§,

(&1, €2, €1, €2 are Majorana-Weyl fermions.)

The translation of the bosons is attributed to the quar-

tic term in the Taylor expansion of V (m) = =2, ©2km?F.

We assume that the SUSY parameters € 3, £12 are c-numbers (pro-

portional to the unit matrix 1nxn)-

1
06, 0] Au = tr ({8, 6Jm)

1 o _
- E k;X_:z a2ktr(€€m2k_2ra - €€m2k_2ra

_mZk—2€€I1a + m2k—2€€:[1a)

= 1 8 aon(Em® 2, Tue — em®2, Tu)¢)
16 k=2

— :’_;(é[rblrbz, Fa]e - g[rblrbza I‘a]g)AblAbz ‘I‘ ce
a — . .

= (T — eE)[Ap, Al + - -
a _ . _ .

= {(smel + &) [Aiy Ag] + - - -

The field a,(x) receives the translation and the gauge
transformation:

[Ai7 Aa] — [Zaz + af,;(ZI?), 10, + a,a(aj)] + ...
= ?(aiaa(w))l \—z’(@aai(w)) + [a,,i(;[;), aa(w)]l‘l‘ cen,

translation gauge transformation

21



However, the fermions do not receive the translation.
n —
[de O]ty = — 3 antp(Em™ e — em™ %) + -

= —a4(€:[‘j€ — Erj€)¢Aj ‘l‘ $ee
= —20,4(51]:"7.61 —+ 52F362)¢AJ 4 eee

We explore the term 1 A; more carefully:
YA, = ipd; + -
= (x@3; + £ X0(@);, -+ 83,0;) TP 4
=1
Therefore, each fermionic field is transformed as

Godd@ =0k
[667 6£]X(21-..u+1) (w) — —2a4(§_11‘3€1 + gzrjez)x({zl...zl) (w)5u+1}g 4.,

(*) -+ - denotes the omission of the non-linear terms of the fields.

It is a future problem to surmount this difficulty.

22



4 Conclusion

e We have pursued the possibility for a matrix model
to describe the gravitational interaction in the curved
spacetime.

e We have identified the large N matrices with the dif-
ferential operators.

® In order to describe the local Lorentz invariance in a
matrix model, the following two ideas are essential:

* We have identified the higher-rank tensor fields
with the spin connection.

* s0(9,1) Lorentz symmetry and the u (V) gauge sym-
metry must be coupled.

e We have attempted to build a model which reduces to
the type IIB supergravity in the low-energy limit:

* We have elucidated that the bosonic part reduce
to the Einstein gravity.

* There are many problems for the supersymmetric
model:
N = 2 SUSY, the mass of the fields - - -

23



Differential operators in the space of large IN matrices'

[Scalars on S 1}

"""""""" X _X
0 1 2 N 0 1 2 N
N N N N N N
(1) trivial bundle with the periodic (2) Z2-twisted bundle with the antiperiodic
condition f(1)=f(0). condition f(1)=—f(0).

(1) Trivial bundle:

We first consider the trivial bundle with the periodic condition
f(1) = f(0). We discritize the region 0 < x < 1 into small slices of

spacing € = L.
(%) (f(’““)e Fn )+f(]3)—f(’“;v1))

€
N (k+1 k—1
=5 003
0 1 ~1
~1 0 1
9, > A=V ~10 1
2
1 ~1 0

(2) Zo-twisted bundle
Now, the periodic condition f(1) = —f(0) is imposed:

0 1 1
—1 0 1
N
0, > A=— —1 0 1
2
—1 -1 0

24



[Laplacian on various manifolds]

iy 1, 13 aretheneighboursof i.

11 T 13 13

AN — K =

t -+ 1 -3 1 1

In the space of a large IN matrix, the differential operators
over various manifolds are embedded.

25



Hausdorff’s moment problem'

[Theorem] (Hausdorff) Let f(x) be a continuous function. If
1 n
/0 dxf(x)x" =0,
form =0,1,2,.-., then f(x) = 0 for all z € [0, 1].

However, this statement does not hold true if we re-
place [0, 1] with [0, co]:

[Example] The continuous function
h(x) = exp(—m%) Sin(w%)

satisfy /3¢ deh(x)x™ = 0 foralln =0,1,2,- ..

[Proof] We note that
/Ooo dyy™e Y = mla ™!
1+i

fora = exp(%) = ﬁ
when m — 3 is a multiple of 4.

andm = 0,1,2,---. This is a real number
Taking the imaginary part of the both hand sides, we obtain
00 .Y Yy
dyy*™ 3 sin(—=) exp(——=) =0
- dyy (5 exp(= ) =0,

form = 0,1,2,-.-. We make a substitution * = %4 to obtain
j§gedzh(x)x™ = 0. (Q.E.D.)

26



Proof of the SUSY transformation of IIB matrix model'

L[5, 60) 40 =0 [, 60) =0

The commutation relation for the bosons is obtained by comparing the follow-
ing two paths:

o oo 1
A, = A, + 7:€2I‘a¢ — A, + "/(El + €2)I‘a¢ - §€2I‘a[Ab9 Ac]rbcela

R oY . 1
Aa 4 Aa -|— 'I:GlI‘a’l,b 4 Aa -|— 'I,(El -|— €2)I‘a1,b — EélI‘a[Ab, AC]I‘bCez.
Then, the commutator is

1 1
00,6014, = —Z&la[Ap, AJT"e + S&Ta[Ay, AL e,

= [Aa, 2€1F062Ac] .

On the other hand, the commutation relation for the fermions is obtained by

5D a LIS a
Y 3 Y+ E[Aa,a Ap)T%e; = 9y + E[A“’ Ap]T% (€1 + €2) — [Aa, ETp9]T ey,

s a 8y a
’lb —]) ’lb + E[Aa, Ab]I‘“bel j) ’lb + E[Aa, Ab]rab(el + 62) - [ACL7 E2I‘b'¢]]:‘a’b€1-

By using the formula of Fierz transformation
— ab - a 7 = c a
eIy = (61I%€2)y — E(GIF €2) T .I'%Y

1
16 x 5!

(ElI‘cl"'c5ez)Fcl...csF“¢,

and the equation of motion

ds 1_.

d—’l; — _?I‘ [Aaa"vb] =0,

the commutator is computed on shell to be
05,851 = [, 2e1T e2Ac].

These commutators are set to be zero by the gauge transformation.

27



2. (67,614, =0, [60,6219 =o.

This is trivial because the inhomogeneous SUSY transformation is merely a

translation of the fermions.

3. [60), 6] A, = —ieTat, [6W, 69 = 0.

This can be proven by taking the difference of these two transformations:

Ay, > Ay > Ay el
1) 62
Ay % Ay 4 ieTap 55 Ay + €T (3 + €),
5¢ ot a_ij
",b — ¢+£ — ¢+£+§I‘J[Aa’Ab]€
5(M a_.. 8¢ a_..
v = Y+ EI‘J[AG,Ab]e =P+ £+ EI‘J[AQ,A(,]G.

28



Explicit computation of the Seeley de Witt coefﬁcients'

We consider the trace of the large IN matrices in terms of the heat kernel: The trace of
the operators are expressed using the complete system as

Trm = /dD:B(a:|m|a:>, (1)

where the bracket |x) and (x| satisfies >, |x)(x| = 1. However, it is difficult to consider
the trace of a general operator, and we regard the operator as the sum of the Laplacian
and the perturbation around it. This is a famous procedure, and the perturbation is
expressed in terms of Secley de Witt coefficient.

It is well known that the Green function is computed to be

> ly) = <) 7 €Xp (— (@ —y)'(e - y)]gij(y)> .

(@] exp (Tg”

dxt dxi 4T

(27T)2

We consider the general elliptic differential operator

d . d
D? = ( i + A*(x)— + B ) . 3
9ii(@) 2~ + Ai(@) - + B(x) )
And we are now interested in the trace
Tr exp(—7D?) :/dda}(m|exp(—7'D2)|:L'>. (4)

To this end, we compute the following quantity utilizing the Campbell-Hausdorff
formula:

(ol exp(~7D?)ly) = (ol exp(X +Y)ly), where ®)
X =7 (49 %) , ©)
v = ((6@) ~ ) e ). @)

The Campbell-Hausdorff formula is
1 1
eAeP = exp (A + B+ _[A, Bl + —((A, [A, Bl + [B, [B, A]}) + - ) . (8)

Since we know that (z|eX|y) = (e(y;_ exp( (T — y)i(x — y)jgij(y)), the quantity

in question is computed as
XX = oxp (Y LGV (X VX 4V =X X X X+ VI + )
= o (V451X V] + QI [X, Y]] — VY X)) + - )
_ 1—|—Y—|—%[X,Y]+ XX YT+ [Y X, Y]] +--
F O+ Y]+ G DG YT + S DG YT 4% +

2
1 1 1 1
= 1+Y+ X Y]+ XX Y]+ EYz + g[X, YIP+ SYIX, Y]+ XYY +-(9)
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Before we enter the computation of the quantity (x|eXtY|y), we summarize the formula
of the differentiation of eX

deX* 1 .
o = 3@ v giswe”,
d?eX 1 1
doindpiz <_§g’i1i2 (y) + 2.2\ &~ V" (- v) 2900 (¥)Giots (y)) eX
d3eX 1 .
Tohdotadets <§(w = ¥) (912 (Y)Gist (Y) + Fiis (¥) 9210 (Y) + Gisir (¥)9i21(Y))
1 151 l2 l3 X
~ a3 Y)'(T —y)? (2 — Y)*Gisty (Y)Gizt2 (Y)Gizis (y) | €
d*eX 1
dzit dziz dais dpis = <4—7_2(gi1i2 (y)gi3i4 (y) + Giqis (y)gi4i1 (y) + Giqiis (y)gi2’i4 (y))

- S—j_3 (:13 - y)ll (:13 - y)h (gi1’i2 (y)g’isll (y)gi4l2 (y) + Ginis (y)gilll (y)gi4l2 (y) + Givis (y)g’i2ll (y)g’i4l2 (y)
+Giria (y)g’i2ll (y)gisl2 (y) + Ginia (y)g’illl (y)g’isl2 (y) + Gisia (y)gi1ll (y)g’i2l2 (y))
(z -y (e —y)2(z —y)* (e - y)l4gi1l1(y)gi2l2(y)gisls(y)gi4l4(y)> e

+ 1674

(10)

Computation of YeX
We start with the computation of the easiest case:

veX = 7 ((g%@) — g W) o+ AT @)+ B@) ) X

= (vB@) - 24 — 9Vgiw) + (69 @) — 7w (—595() + 1@ — )" (@ = 1) g, Vg (0)

Therefore, the trace is obtained by

Te(z)

7r7') 2

Tr(YeX) —/ddm(m|YeX|:1:) —/dd _B(x). (12)

Computation of Z[X, Y]e*

We next go on to a bit more complicated case, and we compute the operator [X, Y] itself:

[X,Y] = Tz( s ddﬂ) X <(gj1j2(m) B ]m(y))d it dai> +Aj(m)i' +B(m)>
e ((gﬂ'lﬁ(w)— PO g o AJ‘(@%M(@) < (50 s i)

261 (y )(dAJ(w))d idjdm] 4 g (y)( di‘f;il)d—,
26715 (y )(dB(m))dm 4 g () 2522)). (13)
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Therefore, the trace is computed to be, with the help of the formulae (10),
1 1
Tr(; (X, Y]eX) = /ddm(m|§[X, Y]eX|z)
e(x) 1., d?gi1Iz () 1 dA’(a:) i d?*B(z)
= [a% { ( 197 @952 (@) (SE— ) = () | + g @) ()

(27r7-) dzxr dx*2 dxit drt2
(14)

Computation of %[X, [X,Y]]leX
We compute the operator [X,[X,Y]] as

4

X, [X, Y]] = 7% aghia (g)ghita () (L2 @)y d

T dxirdxkr * dxizdx*2drit daiz

d3g.71.72(m) d3 + i1i2( ) k1k2( )( d4gj1j2(m) d2

dxirdxizdx*r * drk2dxit dziz g vg Y deirdxizdx*rdxk2’ dxirdriz
2AJ (x) ) d?

dxirdx*r ” dxizdxk2dxi

3 Aj 2 4 47

T 9745 () g1 () (- ) a

dritdxizdxk * deizdxi drirdxizdx®rdxk2 " dai
dzB(:B) d? i d®B(x) d

112 k1k2

dxirdxkr )dmi2d:1c’“2 +49"%(y)g (y)(dmil dxizdxkr )da:’“2
d*B(x) )>

dxirdxizdzk dxk2

+4g2 (y)g"** (y)(

+4g"2 (y)g"** (y)(

+4g"% (y)g**** (y)(

+4g"% (y)g**** (y)(

+9"%2 (y)g"*** (y)( (15)

Therefore, the trace is computed as
1 X d 1 X
Tr( X, (X, Y]IeX) = [ dho (o] [X, (X, Y]leX|z)

e(x) 1 d?gi17z () 1 d%g¥ (x)

dd 1122 - (—=

/ (2mT)2 { (6 (m)ghh(m)( drrdxiz )+ 3( dxtdxi )
dighi (c) Jiria (LA @)
’ldmi2dm’“1dm’“2) + @) dxiriad

) 5 @)

d?B(x) )>

1
2 1112 Jj1j2 kik2
-7 (12 (z)g"72 (z)g" ™ () ( T das

3 .. 1B(x
o @ @) () (10

drrdx*2dxirdxI2

Computation of %Yzex

The next job is the computation of the term %Yzz

V2 = (00— ) gt + A B ) (@) - ) i+ AT
= 7 ((g"m(w) — 9" W) (9" (z) — g7 () dwildwi2:le1dmj2
s2(g (@) — g ) (o) (gin @)  giin)(LL D)L
+2(g"% (x) — g™ (y)) A’ (2 )% +2(9"7 (@) - “"2<y>><d;§f )>dmfdmj
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d? Al (z) d?

+(g™=(z) — ’l”(y))( )—+(9’”2(w) “’2(1/))3()

drirdxiz d J dxirdxiz
£r 2 £r
2575 (@) — g1 @) () L (ghia(a) - W(y))(dféwl)
i dgiiz (x) d? i ; d? i i dB(x)
P A @) () @) A @) AN B() o+ AT (T
1112 1112 2 [ d
(650) — g B T+ B@A ) 1 + BB

The trace is thus
1 2 X d 1 2 X
TT(EY e’) = /d w<m|—Y e’ |x)

e(z dg’?(x ) .
[ ddm(z;ig {7 (——A’(w>g,1,2<w><g—”> - A @)

2 () Ak (2

) + B(w)B(fv))} (18)

Computation of £[X, Y]?eX
We next compute the commutator [X,Y]?, however, from now on, the computation
becomes more complicated than before, and we give only the trace:

Tr(l[X, Y]2eX) = /ddm(m%[X, Y]2eX |2)

/dd 6(113) { ( 116 zk( )9_71.72(37)gl1l2(m)(

(27r7')

dg?'7?(x) . dg''? ()
dx? )( dzk )

192 (o lil2 (g 192 (o lil2 (4
—1.9““(%).%11(ﬂv)gjata(flz‘)(dgjj (@) dg )) -2 ( ))(dgda:ji )

8 dzt ) dzk 4" dxir
)> +(9(7'2)}- (19)

)gl1l2 (113)

dg''2(z) dgii2(xz), 1 dg”’(w) dg??(x)
L IDEEE) - e (L (L

00 (2)

Computation of %Y[X, Yl]eX

Tr(lY[X, Y]eX) = /ddm(mﬁY[x Y]eX|z)

= [t O (Ao o) + A @ ()

(27r7- dxiz

2 T i
dwi;;le;Al( )(dB( )

dzgj1j2(:1:) | . ; d3gj1j2(m)
m)B(fL‘) + 67 12 () 95152 (2) A (m)(m

dAl(:n) ))

2 <%9’“1’“2(w>gﬁ<m>A"(w>< )

+ L gkka (2) gz () ( )

6

1 . d?Al(x)
+3A( )(T) —B( )(
d’B(x) }
dr kld k2)

+T B(@)g (@) (20)
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Computation of %[X, Y]YeX

Tr(l[x, Y]YeX) = /ddm(w%[X, Y)Y eX|z)

/dd (;ﬂ(_i; { (112 k1k2($)91112($)g‘7132(m)(

dg** (@)

daxk:

dg1i2 ()
dxk2

)(

dgi132 (x)

1 dgi1i2 (m)
+-g"1k2 (2) g1, 5, ()i () da*>

6 dxkr

g @ (L, B L @)

6 dxit dxIz
@) (L)) i) 4 L (dgd—,f)

)(

dg’1iz(x)

dxi

)gj2i(-’v)Ai(w)> + (’?(72)}- (21)

dg™’ (x)

dxit

)( )

Seeley de Witt coefficient of the second lowest order
Now that we have computed all of the contribution of the Seeley de Witt coefficient of
the order O(Tl_%), we sum all the results. Then, the trace is finally rewritten as

r(e~™P*) = do(xle”"P%|z) = dy e(z) a TAQ
Tr(e7?) = [dlatele™Pla) = [dte @t rar k). @)

4
2

It goes without stating that the coefficient ag of the lowest order is a9 = 1. Then, the
subleading effect is

w@) = Ba)— (@) L L@ L i)y, L,
+ @ (L) ki) 49 @ o)
b A @ ()
g @) g, ()95, ) (O ()
gt @)gi ()i ) (D) )
N YT L B A T A DY 2 B

Consistency Check with respect to the covariant Laplace Beltrami operator
We now check the consistency of the result (23), by applying the above results to the
covariant Laplace Beltrami operator

@) =~ (/o @) )
= 5@ s+ () = SO )| 2

where we have utilized the differentiation of the determinant

5g(z) = g(x)g” (x)dgij(z) = —g(x)gij(x)dg™ (). (25)
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Then, the problem corresponds to the case in which

dg;;gm)) — %gij(m)(ﬁgkl(m))gkl(w)> B(z) = 0. (26)

Al(z) = <(

In this case, we expect the coefficient a;(x) to be

Rgn) = %gij(m)(—aifﬁj + 8 T; — TyT; + TiTy))
- L@ L) L Een @), 14w, 2@, @)
P @t @) D, LB (),
@000 @) g @) (D (D) @)

as investigated in Di Francesco’s textbook.

And when we substitute (26) into the Seeley de Will coefficient a;(x), we successfully
obtain (27).
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