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Power counting 

• Scaling dim of φ  
 t   b t  (E  b-1E) 
 x  b x 
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 1+3-2+2s = 0 
 s = -1 
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• Renormalizability 

 

• Gravity is highly non-
linear and thus non-
renormalizable 



Abandon Lorentz symmetry? 

3 2I dtdx φ⊃ ∫ 

• Anisotropic scaling 
 t   bz t  (Eb-zE) 
 x  b x 
 φ  bs φ 
 z+3-2z+2s = 0 
 s = -(3-z)/2 

•  s = 0 if z = 3 

( 3 )/

3

s z

n

z n

d x

E

td φ
− + +∝

∫

• For z = 3, any 
nonlinear 
interactions are 
renormalizable! 

• Gravity becomes 
renormalizable!? 



Horava-Lifshitz gravity 
• Basic quantities: 

 lapse N(t), shift Ni(t,x), 3d spatial metric gij(t,x)  
• ADM metric (emergent in the IR) 

ds2 = -N2dt2 + gij (dxi + Nidt)(dxj + Njdt) 
• Foliation-preserving deffeomorphism 

t  t’(t),   xi  x’i(t,xj) 
• Anisotropic scaling with z=3 in UV 

t  bz t,   xi  b xi 
• Ingredients in the action 

Horava (2009) 
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UV action with z=3 
• Kinetic terms (2nd time derivative) 

 
 
                                c.f.  λ = 1 for GR 

•  z=3 potential terms (6th spatial derivative) 
 
 
 
 
c.f. DiRjkDjRki is written in terms of other terms 
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Relevant deformations (with parity) 

• z=2 potential terms (4th spatial derivative) 
 
 

• z=1 potential term (2nd spatial derivative) 
 
 

• z=0 potential term (no derivative) 

[3Ndt gd x∫ 2Rj i
i jR R
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R
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• UV: z=3 , power-counting renormalizability 
            RG flow 

•  IR: z=1 , seems to recover GR iff λ  1 
 
 
 
 
note:  
Renormalizability has not been proved. 
RG flow has not yet been investigated. 

 IR potential 
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IR action with z=1 

 kinetic term 



Cosmological implications 
• Higher curvature terms lead to regular bounce 

(Calcagni 2009, Brandenberger 2009). 
• Higher curvature terms (1/a6, 1/a4) might make the 

flatness problem milder (Kiritsis&Kofinas 2009). 
• The z=3 scaling solves the horizon problem and 

leads to scale-invariant cosmological perturbations 
without inflation (Mukohyama 2009). 

• Absence of local Hamiltonian constraint leads to 
CDM as integration “constant” (Mukohyama 2009). 

• New mechanism for generation of primordial 
magnetic seed field (S.Maeda, Mukohyama, 
Shiromizu 2009). 
 



Different versions of HL gravity 
• There are at least four versions of the theory: w/wo 

detailed balance & w/wo projectability. 
• Only the version without the detailed balance 

condition with the projectability condition has a 
potential to be theoretically consistent and 
cosmologically viable. [c.f. Henneaux, et.al. (2009)] 

• Horava’s original proposal was with the 
projectability condition and with/without the detailed 
balance condition. 

• There is an attempt to extend the non-projectable 
theory by introducing ai = (ln N),i  [Blas, Pujolas and 
Sibiryakov 2009]. 



Projectability condition 
• Infinitesimal tr.  δt = f(t), δxi = ζi(t,xj) 

  
 
 
 

• Space-independent N cannot be transformed to 
space-dependent N. 

• N is gauge d.o.f. associated with the space-
independent time reparametrization. 

• It is natural to restrict N to be space-independent. 
• Consequently, Hamiltonian constraint is an 

equation integrated over a whole space. 
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“Black holes” with N=N(t)? 
• Schwarzschild BH in PG coordinate 

 
 

• Gaussian normal coordinate 
 
 
Lemaitre reference frame 
Doran coordinate 
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Propagating d.o.f. 
• Minkowski + perturbation 

N = 1, Ni = 0, gij = δij + hij 

• Residual guage freedom =  
 time-independent spatial diffeo. 

• Momentum constraint 
 

• Fix the residual guage freedom by setting 
                         at some fixed time surface. 

• Decompose Hij into trace and traceless parts 
   TT part      : 2 d.o.f. (usual tensor graviton) 
   Trace part : 1 d.o.f. (scalar graviton) 

0i ijH∂ =

0t i ijH∂ ∂ = ij ij ijH h hλ δ≡ −



Scalar graviton and λ  1 

• In the limit λ  1, the scalar graviton H 
becomes pure gauge. So, it decouples. 

• However, its kinetic term will vanish 
 
 
and H gets strongly coupled. 
[NOTE: Strong coupling itself does not imply loss of predictability since all 
coefficients of infinite terms in perturbative expansion can be written in 
terms of the 11 parameters of the theory.]  

• It is important to see if there is “Vainshtein 
effect”, i.e. decoupling of the strongly-coupled 
sector from the rest of the world. 
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Vainshtein effect in 
massive gravity 

• Linearized analysis results in vDVZ 
discontinuity of the massless limit.  

• However, perturbative expansion completely 
breaks down and cannot be trusted. 

• Non-perturbative analysis shows continuity 
and GR is recovered in the massless limit. 

• Continuity is not uniform as a function of 
distance. (e.g. 1/r expansion does not work.) 
However, Vainshtein radius can be pushed 
to infinity in the massless limit.  



Strong coupling vs loss of predictability 
• In low-E EFT like massive gravity (and DGP gravity), 

the strong coupling implies loss of predictability. 
Prediction requires knowledge of infinite number of 
terms, which we do not know.  

• In HL gravity, if the theory is really renormalizable 
then all coefficients of infinite terms in perturbative 
expansion are written in terms of the 11 parameters 
of the theory. Therefore, the strong coupling itself 
does not imply loss of predictability. 

• However, we need to see if the strongly coupled 
sector decouples from the other sector. This would 
be an analogue of Vainshtein effect. 



Linear instability of scalar graviton 
• Sign of (time) kinetic term (λ-1)/(3λ-1) > 0. 
• The dispersion relation in flat background 

 ω2 = cs
2k2 x [1+ O(k2/M2)] with cs

2 =-(λ-1)/(3λ-1)<0 
   IR instability in linear level   
      (Wang&Maartens; Blas,et.al.; Koyama&Arroja 2009) 

• Slower than Jeans instability of “DM as integration const” if 
 tJ~(GNρ)-1/2 < tL~L/|cs| . 

• Tamed by Hubble friction or/and O(k2/M2) terms if  
 H-1 < tL or/and L < 1/M. 

• Thus, the linear instability does not show up if 
 |cs| = |(λ-1)/(3λ-1)|1/2 < Max [|Φ|1/2,HL]. (Φ~-GNρL2) 
 for L > Max[0.01mm,1/M]  
(Shorter scales  similar to spacetime foam) 

• Phenomenological constraint on properties of RG flow. 



Analogue of Vainshtein effect 
• Breakdown of perturbation in the limit λ  1 

 
 
 
 
 
 
 

• No negative power of (λ-1) in potential part 
• Non-perturbative analysis is needed for 

scalar graviton sector! 

 momentum constraint 



Analogue of Vainshtein effect 
• Spherically symmetric, static ansatz 

 
 
 
 
 
 

• Two branches 
 
 
 

• “-” branch recovers GR in the λ  1 limit 

 without HD terms 



• (3λ-1)β2 << (λ-1) 
perturbative regime, 1/r expansion 

• (3λ-1)β2 >> (λ-1) 
non-perturvative regime, recovery of GR 

• (3λ-1)β2 ~ (λ-1) with β2~rg/r  r~rg/(λ-1) 
analogue of Vainshtein radius??? 
 
 

r~rg /(λ-1) 

GR  non-GR 
 dynamical 

Izumi & Mukohyama 2009 
“Steller center is dynamical” 

Analogue of Vainshtein effect 
 choose the “-” branch 



• Numerical integration in the “-” branch 
with β(x=0)=1, r(x=0)=1, r’(x=0) given 
 
 
 
 

• Misner-Sharp energy 

Analogue of Vainshtein effect 

x x 

R β  for 
 λ-1=10-6  
 r’(x=0)=2 
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2
rm rβ ≡ − − 

 almost constant r 

m 

10000 

GR is recovered! 



Nonlinear cosmological 
perturbation and λ  1 

(with K.Izumi, to appear soon) 

• HL gravity @ IR  GR + DM [Mukohyama 2009] 

• ∃Subtleties with λ  1  
• Nonlinear cosmological perturbation in 

vacuum HL gravity 
• Gradient expansion 
• No problem with λ  1 in any order 

 



Caustic avoidance 

• In GR, congruence of geodesics forms 
caustics because gravity is attractive. 

• HL gravity is repulsive at short distances, 
due to higher curvature (HC) terms.  
(c.f. bouncing FRW universe) 

• With codimension 2 and 3, HC terms can 
bounce would-be caustics. 

• With codimension 1, deviation of λ from 1 is 
also needed to bounce would-be caustics. 

JCAP 0909:005,2009 



Caustic avoidance 
(preliminary) 
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HC terms and deviation of λ from 
1 can bounce would-be caustics! 

Perhaps, next step is to see “shell 
crossing” without shell crossing 



What happens in the UV? 
(with E.Gumrukcuoglu, to appear soon) 

• 1/3 < λ < 1 is forbidden because of ghost 
• Recovery of GR requires λ  1+0 in the IR 
• A natural candidate for the UV fixed point 

would be λ  ∞ 
• Regular and simpler dynamics with λ  ∞ 

1 1/3 +∞ -∞ 
λ 



Summary 
• Horava-Lifshitz gravity is power-counting renormalizable 

and can be a candidate theory of quantum gravity. 
• While there are many fundamental issues to be addressed, 

it is interesting to investigate cosmological implications.  
e.g. scale-invariant perturbations without inflation 
       dark matter as an integral constant 

• For spherically-symmetric, static, vacuum configurations, 
GR is recovered in the limit λ  1 non-perturbatively. 
 analogue of Vainshtein effect 

• For superhorizon cosmological perturbations, GR + DM is 
recovered in the limit l  1 non-perturbatively. 

• Caustics avoidance requires higher curvature terms and 
deviation of λ from 1 in the UV. Next step is to see if 
bounce of shells can mimic shell crossing. 

• A natural candidate for the UV fixed point would be λ  ∞, 
with regular and simpler dynamics. 
 



Future works 
• Renormalizability beyond power-counting 
• RG flow: is λ = 1 an IR fixed point ? Does it satisfy 

the stability condition for the scalar graviton? 
( |cs| < Max [|Φ|1/2,HL] for L>Max[M-1,0.01mm]) 

• Can we get a common “limit of speed” ? 
(i) Mz=3<<Mpl, (ii) supersymmetry, (iii) other ideas? 

• How generic is ‘Vainshtein effect’? 
• How generic is caustic avoidance? 
• Micro & macro behavior of “CDM” 
• Adiabatic initial condition for “CDM” from the z=3 

scaling 
• Spectral tilt from anomalous dimension 
• Extensions of the original theory: Blas, et.al; Horava 

& Melby-Thompson … 



Backup slides 



Structure of HL gravity 
• Foliation-preserving diffeomorphism 

= 3D spatial diffeomorphism 
+ space-independent time reparametrization 

• 3 local constraints + 1 global constraint 
 = 3 momentum  @ each time @ each point 
 + 1 Hamiltonian @ each time      integrated 

• Constraints are preserved by dynamical 
equations. 

• We can solve dynamical equations, provided 
that constraints are satisfied at initial time. 



FRW spacetime in HL gravity 
• Approximates overall behavior of our patch 

of the universe inside the Hubble horizon. 
• No “local” Hamiltonian constraint 

E.o.m. of matter 
    conservation eq. 

• Dynamical eq 
can be integrated to give 
Friedmann eq with 
“dark matter as 
integration constant” 



IR limit of HL gravity 

• Looks like GR iff λ = 1. So, we assume that 
λ = 1 is an IR fixed point of RG flow. 

• Global Hamiltonian constraint 
 
 
 

• Momentum constraint & dynamical eq  

( )3 21 2
16

ij
ij

N

Ndt gd x K K K R
G

λ
π

− + − Λ∫



Dark matter as integration constant 
• Def. THL

µν 

• General solution to the momentum 
constraint and dynamical eq.  
 

• Global Hamiltonian constraint 
 

   ρHL can be positive everywhere in our 
patch of the universe inside the horizon. 

• Bianchi identity  (non-)conservation eq 
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