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Current constraints on fNL

f local
NL = 32± 21 (68% CL) f equil

NL = 26± 140 (68% CL)
[WMAP7, Komatsu et al, 2010 ]

 fNL is usually assumed to be constant.

In some models,   fNL  can be (relatively strongly) 
scale-dependent.

Scale dependence of  fNL can be a discriminator of models. 

f local
NL = 62± 27 (68%CL) [NRAO VLA Sky Survey, Xia et al, 2010 ]



Scale-dependence of fNL

fNL(k) = fNL(kref)
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k ≡ (k1k2k3)1/3
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Spectral index for  fNL : nfNL ≡
d ln |fNL|

d ln k
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In the following, we consider “local type”: ζ = ζG +
3
5
fNLζ2

G

�
ζ(�k1)ζ(�k2)ζ(�k3)

�
= (2π)3B(k1, k2, k3)δ(�k1 + �k2 + �k3)



Scale-dependence of fNL
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Scales probed by different approach

nfNL = 0.2

nfNL = 0

nfNL = 0.6

probed by halo bias

probed by CMB

probed by voids

probed by halo 
abundance

Scale dependence of non-G. may give interesting 
implications for non-G. from LSS.

[Verde, 1001.5217]



Table 1 Current recent 2 − σ constraints on local fnl
Data/method fNL reference

Photometric LRG - bias 63+54+101−85−331 Slosar et al. 2008
Spectroscopic LRG- bias 70+74+139−83−191 Slosar et al. 2008

QSO - bias 8+26+47−37−77 Slosar et al. 2008
combined 28+23+42−24−57 Slosar et al. 2008
NVSS–ISW 105+647+755−337−1157 Slosar et al. 2008
NVSS–ISW 236 ± 127(2 − σ) Afshordi&Tolley 2008

WMAP3-Bispectrum 30 ± 84 Spergel et al. (WMAP) 2007
WMAP3-Bispectrum 32 ± 68 Creminelli et al. 2007
WMAP3-Bispectrum 87 ± 60 Yadav & Wandelt 2008
WMAP-Bispectrum 38 ± 42 Smith et al. 2009
WMAP5-Bispectrum 51 ± 60 Komatsu et al. (WMAP) 2008
WMAP5-Minkowski −57 ± 121 Komatsu et al. (WMAP) 2008

Table 2 Forecasts 1 − σ constraints on local fNL
Data/method ∆ fNL (1 − σ) reference
BOSS–bias 18 Carbone et al. 2008

ADEPT/Euclid–bias 1.5 Carbone et al. 2008
PANNStarrs –bias 3.5 Carbone et al. 2008

LSST–bias 0.7 Carbone et al. 2008
LSST-ISW 7 Afshordi& Tolley 2008

BOSS–bispectrum 35 Sefusatti & Komatsu 2008
ADEPT/Euclid –bispectrum 3.6 Sefusatti & Komatsu 2008

Planck-Bispectrum 3 Yadav et al . 2007
BPOL-Bispectrum 2 Yadav et al . 2007

can be greatly reduced. Forthcoming Sunyaev-
Zeldovich experiments will provide large sam-
ples of mass-selected clusters which could then
be followed up by lensing mass measurements
(see e.g., [65, 66]). So far there is only one
very high redshift (z = 1.4) very massive M "
8 × 1014M$ with high-precision mass determi-
nation via gravitational lensing [67]. Ref. [68]
pointed out that this object is extremely rare,
for Gaussian initial conditions there should be
0.002 such objects or less in the surveyed area,
which is uncomfortably low probability. But
the cluster mass is very well determined: a non-
Gaussianity still compatible with CMB con-
straints could bring the probability of observing
of the object to more comfortable values. This

result should be interpreted as a “proof of prin-
ciple” showing that this a potentially powerful
avenue to pursue.
The measurement of the three-point corre-

lation function allows one to map directly the
shape-dependence of the bispectrum. For large-
scale structures the limiting factors are the large
non-Gaussian contribution induced by gravita-
tional evolution and the uncertainly of the non-
linear behavior of galaxy bias.
The halo-bias approach can yield highly

competitive constraints, but it is less sensitive to
the bispectrum shape. Still, the big difference in
the magnitude and shape of the scale-dependent
biasing factor between different non-Gaussian
models implies that the halo bias can become a
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[Verde, 1001.5217]

Scales probed by different approach

Scale dependence of non-G. may give interesting 
implications for non-G. from LSS.



Scale-dependence of non-G.

Running of nfNL :

αfNL ≡
dnfNL

d ln k

Spectral index for gNL :

ngNL ≡
d ln |gNL|

d ln k

[Byrnes et al, 1007.4277; Byrnes, Enqvist, TT, 1007.5148; Huang, 1102.4686]



Scale-dependence of non-G can be generated from:

Multiple sources of fluctuations 

Models with mixed inflaton and some other field 
(curvaton/modulaton)

Non-linear evolution of fluctuations after horizon exit

Self-interacting curvaton model

Models with scale-dependent  fNL 



Mixed models with inflaton fluctuations



Mixed model with inflaton fluctuations

the curvature perturbation in a mixed model:

ζ = Nφδφ∗ +
1
2
Nφφδφ2

∗ + Nσδσ∗ +
1
2
Nσσδσ2

∗

Inflaton contribution

Even in the curvaton/modulated reheating models, 
fluctuations of the inflaton can exist and contribute to ζ. 

curvaton/modulaton 
contribution



Mixed inflaton and curvaton model

Non-linearity parameter

6
5
fNL =

N2
σNσσ + N2

φNφφ

(N2
σ + N2

φ)2

Power spectrum 



Spectral index (for power spectrum)

r =
16�

1 + R

Tensor-to-scalar ratio
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Mixed inflaton and curvaton model

R→∞ limit (“pure” curvaton/modulaton limit):

ns = −2� + 2ησσ r → 0



Spectral index for fNL :

Mixed inflaton and curvaton model

nfNL ≡
d ln |fNL|

d ln k

5
6
fNL �

�
R

1 + R

�2 5
6
f (σ)
NL

nfNL =
2

1 + R
(n(σ)

s − n(φ)
s )

P (σ)
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No scale-dep. 
(for quadratic potential)

Scale-dependent



Mixed inflaton and curvaton model



Inflaton

curvaton

ρφ

ρσ

ρ

time 

Inflation

A brief thermal history of the curvaton scenario

(a : scale factor)
ρ

r ∝
a −

4

ρσ ∝ a−3

σ begins to oscillate σ decays

ζφ

ζσ



ns and r in mixed inflaton-curvaton model
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Inflation: 

ησσ = 0.005

Sizable r (>O(0.01)) and large fNL (>O(10)) can both possible

fdec =
3ρσ

4ρrad + 3ρσ

����
decay

V (φ) =
1
2
m2

φφ2

U(σ) =
1
2
m2

σσ2Curvaton:
� = ηφφ = 0.01

(Initial amplitude for σ)

[Ichikawa, Suyama, TT, Yamaguchi, 0802.4138]



Small-field inflation case 

nfNL � −2(ns − 1) ∼ 0.08

(�� η)

r � O(1)

---

---

may be detectable with Planck!

[Byrnes et al. 2009]

Mixed inflaton and curvaton model

0.06− 0.1

Spectral index for fNL :



Large-field inflation case (e.g. chaotic inflation) (� ∼ η)

Spectral index for fNL :
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Self-interacting curvaton model



Self-interacting curvaton model

In some curvaton models, the curvaton potential can deviate 
from a (purely) quadratic form.

When an MSSM flat direction is the curvaton, its potential can be given as:
For example,

V (σ) =
1
2
m2

σσ2 +
λ2σ2(n−1)

2n−1M2(n−3)

The form of the potential can deviate from the quadratic one.

Interesting prediction for the scale-dependence of non-Gaussianity.

U



nfNL in the self-interacting curvaton

nfNL =
V

���
(σ∗)

3H2
∗

�
σoscσ

�
osc

(σ�
osc)2 + σoscσ

��
osc

�

When the potential is purely quadratic,  
(almost) no scale-dependence 

Non-zero nfNL  may indicate a self-interacting curvaton.

In the following, we assume: V (σ) =
1
2
m2

σσ2 + λσn

Scale-dependence of fNL

U

U
���

(σ∗)

Non-linear evolution outside the horizon may give large nfNL.



To characterize the size of NQ term, we define s:

s ≡ U(non− quadratic)
U(quadratic)

= 2λ

�
σ∗
mσ

�n−2

(s → 0 : quadratic limit )

nfNL in the self-interacting curvaton

p

Larger s, more non-linear evolution of δσ



nfNL in the self-interacting curvaton
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where

[Byrnes, Enqvist, TT,  1007.5148]

V (σ) =
1
2
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σσ2 + λσp

s ≡ 2λ

�
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nfNL in the self-interacting curvaton
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(case with n=6)

s controls the size of nfNL.  fNL is determined by r. 

fdec



Summary

Scale-dependence of non-Gaussianity (nfNL) can be 
useful to discriminate models of large non-G.

Some models (e.g.. mixed inflaton-curvaon, self-

interacting curvaton) predict (relatively) large nfNL,
which can be testable with future obs.

Scale-dependence of non-G would give interesting 
information for models of primordial fluctuations.


