

Osamu Seto (Hokkai-Gakuen. Univ.) With Ki-Young Choi (PNU)

Ref: Phys. Rev. D 82, 103519 (2010)

context

- Introduction
- A model

Cosmological evolution

- Density perturbation
 - Formulation

Small and large initial amplitude

• Summary

§ Introduction

• Inflation

is an elegant solution to horizon, flatness, monopole problem and

provides the seed of density fluctuation of adiabatic,

almost scale invariant,

Gaussian and

(if we are lucky) gravitation wave

Gaussian fluctuation?

Inflaton in a single field inflation

 ≈ very weakly interacting (slow roll)
 ≈ nearly free field
 ≈ Gaussian quantum fluctuation

nonlinear parameters are of order of slow roll parameters; $f_{NL} = O(\epsilon, \eta)$ Maldacena 2003

A large non-Gaussianity

• Curvaton is a promising mechanism

Lyth et al 2003

• What is a "curvaton"?

Lyth and Wands, Moroi and Takahashi, Enqvist and Sloth 2001~2

- \cdot Not inflaton!
- \cdot Scalar field with a flat potential, which condensates during inflation
- Field fluctuation is converted into density fluctuation

Curvaton models

- Different forms of Potential
- Quadratic [many many...]

$$V = \frac{1}{2}m_{\sigma}^2\sigma^2$$

- +Quartic [Enqvist et al, Huang,...]
- Cosin type [Kawasaki et al, Huang]
- Double well [Choi and Seto]

$$V(\sigma) = \frac{\lambda}{4} \left(\sigma^2 - v^2\right)^2$$

Why a large non-Gaussianity from curvaton?

- From inflaton
- $\zeta \approx \Phi/(1+w) \approx (1/\epsilon)(1/H M_P^2) \phi \delta \phi$ $\approx H \delta \phi/\phi + O(\delta \phi^2/M_P^2)$
- Second/(first)² \approx O(ϕ ²/ H²M_P²)=O(ϵ)
- From curvaton
- $\zeta \approx \delta \rho / \rho = (1 + \delta \sigma / \sigma)^2 1 = 2 \delta \sigma / \sigma + (\delta \sigma / \sigma)^2$

Curvaton models

- Different forms of Potential
- Quadratic [many many...]

$$V = \frac{1}{2}m_{\sigma}^2\sigma^2$$

- +Quartic [Enqvist et al, Huang,...]
- Cosin type [Kawasaki et al, Huang,...]
- Double well [Choi and Seto]

$$V(\sigma) = \frac{\lambda}{4} \left(\sigma^2 - v^2\right)^2$$

§ A Model

• Double well potential with a large VEV [DW problem] and a small self-coupling [Flatness]

$$\mathcal{L} = -\frac{1}{2}(\partial\sigma)^2 - V(\sigma)$$

$$V(\sigma) = \frac{\lambda}{4} \left(\sigma^2 - v^2\right)^2$$

• Decay rate [saxion-like]

$$\Gamma_{\sigma} = C \frac{m_{\sigma}^3}{v^2} = C(2\lambda)^{3/2} v$$

§ § Cosmological evolution

• Rough history

 $\rho_{\sigma}|_{v} = \frac{\lambda}{\Lambda} (\sigma_{v}^{2} - v^{2})^{2}$

• Quartic to quadratic transition

At the time when the energy density becomes comparable with the height of potential hill

§ § Cosmological evolution 2

• Analytic solutions from the scaling law

 σ

$$\begin{aligned} f(t) \simeq v\Theta(\sigma_{\rm os}) &+ \frac{\sigma_{\rm 2os}}{(m_{\sigma}t)^{3/4}} \sin m_{\sigma}t \\ \sigma_{\rm 2os} \simeq \begin{cases} (\sigma_v - v) \left(\frac{\rho_{\sigma}|_{\rm os}}{\rho_{\sigma}|_v}\right)^{3/8} \left(\frac{m_{\sigma}}{2\sqrt{3\lambda\sigma_{\rm os}^2}}\right)^{3/4}, \\ (\sigma_v - v) \left(\frac{\rho_{\sigma}|_{\rm os}}{\rho_{\sigma}|_v}\right)^{3/8} \left(\frac{H_R}{2\sqrt{3\lambda\sigma_{\rm os}^2}}\right)^{1/4} \left(\frac{m_{\sigma}}{2\sqrt{3\lambda\sigma_{\rm os}^2}}\right)^{3/4} \end{aligned}$$

§ § Cosmological evolution 2

• Analytic solutions fit well!

§ § Cosmological evolution 3.1

• Reheating temperature T_R dependence energy density High reheating temperature ρι ρσ

§ § Cosmological evolution 3.2

• Reheating temperature T_R dependence energy density Low reheating temperature ρι ρσ

§ Density perturbation

- We estimate power spectrum and non-Gaussianity in terms of nonlinear parameters fnl and gnl
- We impose the constraints from the null detection of tensor mode fluctuation

• We employ δN formalism for perturbation Lyth et al, Sasaki et al

$$\zeta_{\sigma} = \delta N + \frac{1}{3} \int_{\rho_0(t)}^{\rho(t,\mathbf{x})} \frac{d\tilde{\rho}}{\tilde{\rho} + \tilde{p}}$$

on the uniform curvaton density surface.

• Expand this with the late time energy density expression $\rho_{\sigma}(t,x) \simeq \frac{m_{\sigma}^2 \sigma_{2 \mathrm{os}}^2(t,x)}{2(mt)^{3/2}}$

• After the expansion

$$\zeta_{\sigma} = \zeta_{\sigma 1} + \frac{1}{2}\zeta_{\sigma 2} + \frac{1}{(\zeta_{\sigma 1} = \frac{2\sigma'_{2 \circ s}}{3\sigma_{2 \circ s}}\delta\sigma_{*}, \zeta_{\sigma 2} = -\frac{3}{2}\left(1 - \frac{\sigma_{2 \circ s}\sigma''_{2 \circ s}}{\sigma'_{2 \circ s}}\right)\zeta_{\sigma 1}^{2} \equiv A_{2}\zeta_{\sigma 1}^{2}, \zeta_{\sigma 3} = \frac{9}{4}\left(2 - 3\frac{\sigma_{2 \circ s}\sigma''_{2 \circ s}}{\sigma'_{2 \circ s}^{2}} + \frac{\sigma_{2 \circ s}^{2}\sigma''_{2 \circ s}}{\sigma'_{2 \circ s}}\right)\zeta_{\sigma 1}^{3} \equiv A_{3}\zeta_{\sigma 1}^{3}.$$

• Total $\zeta = \zeta_1 + \frac{1}{2}\zeta_2 + \frac{1}{6}\zeta_3 + R \equiv \frac{3\rho_\sigma}{4\rho_r + 3\rho_\sigma}$ $\zeta_1 = (1-R)\zeta_{r1} + R\zeta_{\sigma 1}, \qquad R \equiv \frac{3\rho_\sigma}{4\rho_r + 3\rho_\sigma}$ $\zeta_2 = (1-R)\zeta_{r2} + R\zeta_{\sigma 2} + R(1-R)(3+R)(\zeta_{r1} - \zeta_{\sigma 1})^2,$

• The power spectrum

$$\mathcal{P}_{\zeta} = (1-R)^2 \mathcal{P}_{\zeta_r} + R^2 \mathcal{P}_{\zeta_\sigma}$$
$$\mathcal{P}_{\zeta_r} = \left(\frac{H_*^2}{2\pi |\dot{\phi}|}\right)^2 = \frac{H_*^2}{8\pi^2 \epsilon M_P^2},$$
$$\mathcal{P}_{\zeta_\sigma} = \frac{H_*^2}{4\pi^2} \left(\frac{2\sigma'_{2\text{os}}}{3\sigma_{2\text{os}}}\right)^2$$

$$f_{NL} = \frac{5}{6} \frac{\tilde{r}^2}{(1+\tilde{r})^2} \left[\frac{3+A_2}{R} - 2 - R \right],$$

$$g_{NL} = \frac{25}{54} \frac{\tilde{r}^3}{(1+\tilde{r})^3} \left[\frac{9+9A_2+A_3}{R^2} - \frac{18+6A_2}{R} - 4 - 3A_2 + 10R + 3R^2 \right].$$

• The power spectrum

$$\mathcal{P}_{\zeta} = (1-R)^{2} \mathcal{P}_{\zeta_{r}} + R^{2} \mathcal{P}_{\zeta_{\sigma}}$$
$$\mathcal{P}_{\zeta_{r}} = \left(\frac{H_{*}^{2}}{2\pi |\dot{\phi}|}\right)^{2} = \frac{H_{*}^{2}}{8\pi^{2} \epsilon M_{P}^{2}},$$
$$\mathcal{P}_{\zeta_{\sigma}} = \frac{H_{*}^{2}}{4\pi^{2}} \left(\frac{2\sigma'_{2\text{os}}}{3\sigma_{2\text{os}}}\right)^{2}$$
• Non-linear parameters
$$f_{NL} = \frac{5}{6} \frac{\tilde{r}^{2}}{(1+\tilde{r})^{2}} \left(\frac{3+A_{2}}{R} - 2-R\right],$$
$$\tilde{r} \equiv \frac{R^{2} \mathcal{P}_{\zeta_{\sigma}}}{(1-R)^{2} \mathcal{P}_{\zeta_{r}}}$$
$$g_{NL} = \frac{25}{54} \frac{\tilde{r}^{3}}{(1+\tilde{r})^{3}} \left[\frac{9+9A_{2}+A_{3}}{R^{2}} - \frac{18+6A_{2}}{R} - 4 - 3A_{2} + 10R + 3R^{2}\right].$$

Intuitive understanding of 1/R

• If mainly subdominat curvaton generate $\delta T/T$

- ζ_{σ} is diluted, $\zeta_{\sigma} \rightarrow \zeta = R \zeta_{\sigma}$
- Second/(first)² \approx O(R/ R²) = O(1/ R)

"subdominat curvaton predict a large fnl"

Wands et al, Langlois et al, Enqvist et al,...

§ § Small initial expectation

• Quantities appears in ζ s.

$$\begin{split} \sigma_{2os}' &= \frac{(m_{\sigma}/2\sqrt{\lambda})^{3/4}}{(3\sigma_{os}^2 - v^2)^{3/8}} \left(1 - \frac{9}{4} \frac{\sigma_{os}(\sigma_{os} - v)}{(3\sigma_{os}^2 - v^2)}\right) \\ \sigma_{2os}'' &= \frac{(m_{\sigma}/2\sqrt{\lambda})^{3/4}}{(3\sigma_{os}^2 - v^2)^{11/8}} \left(-\frac{9}{2}\sigma_{os} - \frac{9}{4}(\sigma_{os} - v) + \frac{297}{16} \frac{(\sigma_{os} - v)\sigma_{os}^2}{(3\sigma_{os}^2 - v^2)}\right), \\ \sigma_{2os}''' &= \frac{(m_{\sigma}/2\sqrt{\lambda})^{3/4}}{(3\sigma_{os}^2 - v^2)^{11/8}} \left(-\frac{27}{4} + \frac{891}{16} \frac{\sigma_{os}^2 + (\sigma_{os} - v)\sigma_{os}}{(3\sigma_{os}^2 - v^2)} - \frac{16929}{64} \frac{(\sigma_{os} - v)\sigma_{os}^3}{(3\sigma_{os}^2 - v^2)^2}\right). \end{split}$$

• $\sigma_{os} \rightarrow v$ limit, the formula is reduced to that of quadratic model's

§ § Reheating temperature for a large initial amplitude

• Reheating temperature T_R (background evolution) affects parameters somewhat

§ § Large initial expectation 1/5

• Field fluctuation $\delta\sigma$ $\ddot{\delta\sigma} + 3H\dot{\delta\sigma} + \lambda(3\sigma^2 - v^2)\delta\sigma = 0$

§ § Large initial expectation 2/5

• Curvature perturbation ζ

$$\begin{aligned} \zeta &= (1-R)\zeta_r + \frac{R}{2} \left(\frac{\delta\sigma_*}{\sigma_*}\right) + \frac{1}{8} \left(\frac{1}{R} - 2 - R\right) R^2 \left(\frac{\delta\sigma_*}{\sigma_*}\right)^2 \\ &+ \frac{1}{48} \left(-\frac{1}{R^2} - \frac{6}{R} + 2 + 10R + 3R^2\right) R^3 \left(\frac{\delta\sigma_*}{\sigma_*}\right)^3, \qquad \text{for high } T_R, \end{aligned}$$

$$\zeta = (1-R)\zeta_r + \frac{R}{3} \left(\frac{\delta\sigma_*}{\sigma_*}\right) + \frac{1}{18} \left(-2-R\right) R^2 \left(\frac{\delta\sigma_*}{\sigma_*}\right)^2 + \frac{1}{162} \left(5+10R+3R^2\right) R^3 \left(\frac{\delta\sigma_*}{\sigma_*}\right)^3, \quad \text{for low } T_R,$$

§ § Large initial expectation 2/5

• Curvature perturbation ζ

$$\begin{aligned} \zeta &= (1-R)\zeta_r + \frac{R}{2} \left(\frac{\delta \sigma_*}{\sigma_*} \right) + \frac{1}{8} \left(\frac{1}{R} - 2 - R \right) R^2 \left(\frac{\delta \sigma_*}{\sigma_*} \right)^2 \\ &+ \frac{1}{48} \left(-\frac{1}{R^2} - \frac{6}{R} + 2 + 10R + 3R^2 \right) R^3 \left(\frac{\delta \sigma_*}{\sigma_*} \right)^3, \quad \text{for high } T_R, \end{aligned}$$

$$\begin{aligned} \zeta &= (1-R)\zeta_r + \frac{R}{3} \left(\frac{\delta\sigma_*}{\sigma_*}\right) + \frac{1}{18} \left(-2-R\right) R^2 \left(\frac{\delta\sigma_*}{\sigma_*}\right)^2 \\ &+ \frac{1}{162} \left(5+10R+3R^2\right) R^3 \left(\frac{\delta\sigma_*}{\sigma_*}\right)^3, \quad \text{for low } T_R, \end{aligned}$$

Absence of inverse power of R

§ § Large initial expectation 3/5

• Resultant nonlinear parameters

$$f_{\rm NL} = \left(\frac{\tilde{r}}{1+\tilde{r}}\right)^2 \frac{5}{6} \left(\frac{1}{R} - 2 - R\right) > -2$$
$$g_{\rm NL} = \left(\frac{\tilde{r}}{1+\tilde{r}}\right)^3 \frac{25}{54} \left(-\frac{1}{R^2} - \frac{6}{R} + 2 + 10R + 3R^2\right), \qquad \text{for high } T_R,$$

$$f_{\rm NL} = \left(\frac{\tilde{r}}{1+\tilde{r}}\right)^2 \frac{5}{6} \left(-2-R\right)$$
$$g_{\rm NL} = \left(\frac{\tilde{r}}{1+\tilde{r}}\right)^3 \frac{25}{54} \left(5+10R+3R^2\right), \qquad \text{for low } T_R,$$

§ § Large initial expectation 3/5

• Resultant nonlinear parameters

§ § Large initial expectation 4/5

• Another feature of nonlinear parameters

• A negative f_{NL} is possible, unlike quadratic curvaton.

§ § Large initial expectation 5/5

• Tensor (gravitational wave) modes

§ Summary

We have studied curvaton model which has a double well potential

- Possible tachyonic amplification
- For a low reheating temperature, f_{NL} can not be large because of accidental cancellations

The statement "a subdominant curvaton predict a large f_{NL}" is not ALWAYS ture

• Nontrivial initial amplitude dependence of f_{NL}