A parametrisation of the growth index in GR with a non-trivial vacuum energy and Fisher matrix analysis

> Alicia Bueno Belloso alicia.bueno@uam.es

Work in progress in collaboration with Juan García-Bellido and Domenico Sapone

YITP, Kyoto, 22.3.2011

Universidad Autónoma de Madrid / Instituto de Física Teórica

What is γ and why is it interesting?

Outline

- 1 What is γ and why is it interesting?
- **(2)** Calculating γ for different DE models
- 3 Fisher matrix analysis for EUCLID with a novel parametrisation

4 Conclusions

 $\begin{array}{c} \mbox{What is } \gamma \mbox{ and why is it interesting?} \\ \mbox{Calculating } \gamma \mbox{ for different DE models} \\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation} \\ \mbox{Conclusions} \end{array}$

Tracking down Dark Energy

- \bullet Accelerated phase of the Universe \Longrightarrow Many theoretical models of DE
- "Easiest" solution: Λ CDM with w = -1 but it could also be w = w(a)
- Need to devise strategies to distinguish between models ⇒ measuring the expansion history is not enough!
- The growth rate of structures can distinguish between models with similar expansion histories
- Large scale structure measurements can measure $G(a) = \delta_m/a$ and $f(a) = \frac{d \ln \delta}{d \ln a} = \Omega_m(a)^{\gamma}$

Measuring γ

Weak lensing

- Deflection angle determined by $\phi+\psi \Longrightarrow$ information about matter density distribution
- Include different models of DE $\implies \begin{cases} k^2 \phi = -4\pi GQ(k,a)\bar{\rho}_m \delta_m \\ \psi = (1 + \eta(k,a))\phi \end{cases}$
- If $Q \neq 1$ and $\eta \neq 0$ evolution of matter perturbations changes \Rightarrow modified growth of linear perturbations parametrised by γ

$$P_{ij}(\ell) = H_0^3 \int_0^\infty \frac{dz}{E(z)} W_i(z) W_j(z) P_{nl} \left[P_l \left(\frac{H_0 \ell}{r(z)}, z \right) \right]$$

Measuring γ

Galaxy power spectrum

- Power spectrum analysis of galaxy redshift surveys containing acoustic peaks can measure cosmological parameters
- Amplitude of matter power spectrum rescaled by G(z)

$$P_{obs}(z,k) = \frac{D_{Ar}^2(z)H(z)}{D_A^2(z)H_r(z)}G^2(z)b(z)^2(1+\beta\mu^2)^2P_{0r}(k) + P_{shot}(z)$$

- Observation of galaxy power spectra affected by:
 - Bias factor: galaxy overdensity traces matter distribution through bias
 - *Redshift space distortions*: we only measure *P*_{gal} in redshift space, which is distorted compared to real space
 - *Reference cosmology*: takes into account difference in comoving volumes in 2 different cosmologies
 - *Shot noise*: Poissonian-like noise from the number count of galaxies in the survey volume

Perturbation equations

• Linear perturbation equations for a general fluid with $w = p/\rho$

$$\delta' = 3(1+w)\Phi' - \frac{V}{Ha^2} - 3\frac{1}{a}\left(\frac{\delta p}{\rho} - w\delta\right),$$

$$V' = -(1-3w)\frac{V}{a} + \frac{k^2}{Ha^2}\frac{\delta p}{\rho} + (1+w)\frac{k^2}{Ha^2}\Psi - (1+w)\frac{k^2}{Ha^2}\sigma$$

Ma, Bertschinger 1995

where
$$\delta = \delta \rho / \rho$$
 and $V = i k_j T_0^j / \rho$

- Interested in evolution of matter density field $\implies \delta p = w = \sigma = 0$
- Master equation for small scales (assuming no DE perturbations):

$$\delta^{\prime\prime} + \left(\frac{3}{a} + \frac{E^\prime}{E}\right)\delta^\prime - \frac{3}{2a^2}\frac{\Omega_{\rm M}^0 a^{-3}}{E^2}\delta = 0\,, \label{eq:delta_eq}$$

• Solution for constant w (growing mode) Lee, Ng 2010 $\delta(a) = C_1 a \,_2F_1\left(\frac{w-1}{2w}, \frac{-1}{3w}, 1 - \frac{5}{6w}; -\frac{\Omega_{\text{DE}}^0}{\Omega_{\text{C}}^0} a^{-3w}\right)$

From δ to γ

- Steps to build the growth index
 - Logarithmic derivative:

۲

$$F(a) \equiv rac{d\log\delta}{d\log a} = 1 - rac{3(w-1)}{6w-5} rac{\Omega_{\text{DE}}^0}{\Omega_{\text{M}}^0} a^{-3w} rac{2^{F_1} \left\lfloor rac{3w-1}{2w}, rac{3w-1}{3w}, rac{12w-5}{6w}; -rac{\Omega_{\text{DE}}^0}{\Omega_{\text{M}}^0} a^{-3w}
ight
floor}{2^{F_1} \left\lceil rac{w-1}{2w}, rac{3w}{3w}, rac{6w-5}{6w}; -rac{\Omega_{\text{DE}}^0}{\Omega_{\text{M}}^0} a^{-3w}
ight
ceil },$$

- Gamma parameter: $f(a) = \Omega^{\gamma}_{\mathsf{M}}(a)$
 - For a non-redshift dependent γ : $\gamma = \frac{3(w-1)}{6w-5} = \frac{6}{11} \simeq 0.545$ (w = -1)

Linder, Cahn 2008

 $\label{eq:constraint} \begin{array}{c} \mbox{What is γ and why is it interesting?}\\ \mbox{Calculating γ for different DE models}\\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation}\\ \mbox{Conclusions}\\ \mbox{Concl$

Parametrisation of γ

- If γ depends on redshift, usual parametrisation: $\gamma(z) = \gamma_0 + \gamma_1 \frac{z}{1+z}$
- Is this a good parametrisation?

Varying the equation of state

- Usual parametrisation of $w(a) = w_0 + w_1(1 a)$
- Matter density parameter: $\Omega_{\mathsf{M}}(a) = \left(1 + \frac{\Omega_{\mathsf{DE}}^0}{\Omega_{\mathsf{M}}^0} a^{-3(w_0 + w_1)} e^{-3w_1(1-a)}\right)^{-1}$
- Density contrast for slowly varying w(a)

$$\begin{split} \delta(a) &= a \,_{2}F_{1}\left[\frac{w(a)-1}{2w(a)}\left(1-\frac{3w_{1}}{3w(a)-1}\right), \frac{-1}{3w(a)}\left(1+\frac{3w_{1}}{3w(a)-1}\right), \\ & \frac{6w(a)-5}{6w(a)}-\frac{w_{1}}{w(a)}; -\frac{\Omega_{\text{DE}}^{0}}{\Omega_{\text{M}}^{0}} \, a^{-3(w_{0}+w_{1})} \, e^{-3w_{1}(1-a)}\right] \end{split}$$

AB, García-Bellido, Sapone, in preparation

γ for DGP

• Differential equation for density contrast in DGP

$$k^2\Phi = -4\pi G\left(1 - \frac{1}{3\beta}\right)\bar{\rho}_m\delta_m, \qquad \beta = 1 - \frac{2(Hr_c)^2}{2Hr_c - 1}$$

• Approximation for γ : $\gamma = \frac{7+5\Omega_{M}(a)+7\Omega_{M}^{2}(a)+3\Omega_{M}^{3}(a)}{(1+\Omega_{M}^{2}(a))(11+5\Omega_{M}(a))}$

Linder, Cahn 2008

Amendola, Kunz, Sapone 2008

 γ for f(R)

• Perturbation equations in Fourier space: Scale dependent!

$$\ddot{\delta}_{m} + \left(2H + \frac{\dot{F}}{2F}\right)\dot{\delta}_{m} - \frac{\rho_{m}}{2F}\delta_{m} = \frac{1}{2F}\left[\left(-6H^{2} + \frac{k^{2}}{a^{2}}\right)\delta F + 3H\dot{\delta}F + 3\ddot{\delta}F\right]$$
$$\ddot{\delta}F + 3H\dot{\delta}F + \left(\frac{k^{2}}{a^{2}} + \frac{f_{,R}}{3f_{,RR}} - \frac{R}{3}\right)\delta F = \frac{1}{3}\rho_{m}\delta_{m} + \dot{F}\dot{\delta}_{m}$$

Tsujikawa, 2008

• Small scale approximation $(k^2/a^2 \gg H^2)$

$$\ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G_{\text{eff}}\rho_m \delta_m \simeq 0, \qquad G_{\text{eff}} \equiv \frac{G}{F} \frac{4\frac{k^2}{a^2} + \frac{f_{,RR}}{f_{,RR}}}{3\frac{k^2}{a^2} + \frac{f_{,RR}}{f_{,RR}}}$$

γ for f(R)

Tsujikawa, Gannouji, Moraes, Polarski 2009 $\label{eq:constraint} \begin{array}{c} \mbox{What is γ and why is it interesting?}\\ \mbox{Calculating γ for different DE models}\\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation}\\ \mbox{Conclusions} \end{array}$

Survey specifications and fiducial model

Survey specifications

- Photometric survey in the range 0.5 < z < 2.1 divided in $\Delta z =$ 0.2 bins. Survey area of 20000 deg^2
- Galaxy number density per redshift bin

Laureijs et al. 2009

z	$n_1(z) imes 10^{-3}$	$n_{2}(z) \times 10^{-3}$
0.5 - 0.7	4.69	3.56
0.7 - 0.9	3.33	2.42
0.9 - 1.1	2.57	1.81
1.1 - 1.3	2.10	1.44
1.3 - 1.5	1.52	0.99
1.5 - 1.7	0.92	0.55
1.7 - 1.9	0.54	0.29
1.9 - 2.1	0.31	0.15

Fiducial model

- Cosmological parameters: ACDM model with WMAP-7yr data.
- Dark energy parameters: $w_0 = -0.96, w_1 = 0, \gamma = 0.545$ and γ as a free parameter

 $\label{eq:constraint} \begin{array}{c} \mbox{What is γ and why is it interesting?}\\ \mbox{Calculating γ for different DE models}\\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation}\\ \mbox{Conclusions}\\ \mbox{Conclusions}\\ \end{array}$

Baryon Acoustic Oscillations

• Evaluate *F_{ij}* for the following parameters:

	Parameters	
1	total matter density	$\omega_m = \Omega_{m_0} h^2$
2	total baryon density	$\omega_b = \Omega_{b_0} h^2$
3	optical thickness	τ
4	spectral index	ns
5	matter density today	Ω_{m_0}
	For each redshift bin	
6	Hubble parameter	$\log H(z)$
7	Angular diameter distance	$\log D_A(z)$
8	Growth factor	$\log G(z)$
9	z-distortion	$\log \beta(z)$
10	shot noise	Ps

 \Rightarrow project into dark energy parameters: w_0, w_1 and γ

 $\label{eq:constraint} \begin{array}{c} \mbox{What is γ and why is it interesting?}\\ \mbox{Calculating γ for different DE models}\\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation}\\ \mbox{Conclusions} \end{array}$

Baryon Acoustic Oscillations

- $\bullet\,$ We consider 3 cases for γ
 - $\bullet~\gamma$ free parameter, independent in each redshift bin

 $\label{eq:constraint} \begin{array}{c} What \text{ is } \gamma \text{ and why is it interesting?} \\ Calculating ~\gamma \text{ for different DE models} \\ \textbf{Fisher matrix analysis for EUCLID with a novel parametrisation} \\ Conclusions \\ \hline \end{array}$

Baryon Acoustic Oscillations

- We consider 3 cases for γ
 - γ free parameter, independent in each redshift bin
 - γ free parameter parametrised by γ_0 and γ_1 but equal for all redshift bins

 $\label{eq:constraint} \begin{array}{c} \mbox{What is γ and why is it interesting?}\\ \mbox{Calculating γ for different DE models}\\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation}\\ \mbox{Conclusions} \end{array}$

Baryon Acoustic Oscillations

- We consider 3 cases for γ
 - γ free parameter, independent in each redshift bin
 - γ free parameter parametrised by γ_0 and γ_1 but equal for all redshift bins
 - γ dependent on dark energy parameters w_0 and w_1

Komatsu et al. 2011

 $\label{eq:constraint} \begin{array}{c} \mbox{What is γ and why is it interesting?}\\ \mbox{Calculating γ for different DE models}\\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation}\\ \mbox{Conclusions}\\ \mbox{Conclusions}\\ \end{array}$

Galaxy Power Spectrum

• Evaluate F_{ij} for the following parameters:

	Parameters	
1	total matter density	$\omega_m = \Omega_{m_0} h^2$
2	total baryon density	$\omega_{b}=\Omega_{b_{0}}h^{2}$
3	optical thickness	au
4	spectral index	ns
5	matter density today	Ω_{m_0}
6	equation of state parameter	w ₀
7	equation of state parameter	w ₁
	For each redshift bin	
8	growth index	γ
9	shot noise	Ps

 \Rightarrow get directly the errors for dark energy parameters w_0, w_1 and γ

 $\label{eq:constraint} \begin{array}{c} \mbox{What is γ and why is it interesting?}\\ \mbox{Calculating γ for different DE models}\\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation}\\ \mbox{Conclusions} \end{array}$

Galaxy Power Spectrum

- $\bullet\,$ We consider 3 cases for γ
 - $\bullet~\gamma$ free parameter, independent in each redshift bin

 $\label{eq:constraint} \begin{array}{c} What \text{ is } \gamma \text{ and why is it interesting?} \\ Calculating ~\gamma \text{ for different DE models} \\ \hline \\ \textbf{Fisher matrix analysis for EUCLID with a novel parametrisation} \\ \hline \\ Conclusions \\ \hline \end{array}$

Galaxy Power Spectrum

- $\bullet\,$ We consider 3 cases for γ
 - γ free parameter, independent in each redshift bin
 - γ free parameter parametrised by γ_0 and γ_1 but equal for all redshift bins

 $\label{eq:constraint} \begin{array}{c} What \text{ is } \gamma \text{ and why is it interesting?} \\ Calculating ~\gamma \text{ for different DE models} \\ \hline \\ \textbf{Fisher matrix analysis for EUCLID with a novel parametrisation} \\ \hline \\ Conclusions \\ \hline \end{array}$

Galaxy Power Spectrum

- We consider 3 cases for γ
 - γ free parameter, independent in each redshift bin
 - γ free parameter parametrised by γ_0 and γ_1 but equal for all redshift bins
 - γ dependent on dark energy parameters w_0 and w_1

Komatsu et al. 2011

 $\label{eq:constraint} \begin{array}{c} What \text{ is } \gamma \text{ and why is it interesting?} \\ Calculating ~\gamma \text{ for different DE models} \\ \hline \textbf{Fisher matrix analysis for EUCLID with a novel parametrisation} \\ Conclusions \\ \hline \textbf{Conclusions} \end{array}$

Weak Lensing

• Evaluate *F_{ij}* for the following parameters:

	Parameters	
1	total matter density	$\omega_m = \Omega_{m_0} h^2$
2	total baryon density	$\omega_b=\Omega_{b_0}h^2$
3	optical thickness	au
4	spectral index	ns
5	matter density today	Ω_{m_0}
6	equation of state parameter	w ₀
7	equation of state parameter	w ₁
	For each redshift bin	
8	growth index	γ
9	rms of the density perturbations at $8h^{-1}$ Mpc	σ_8

 \Rightarrow get directly the errors for dark energy parameters w_0, w_1 and γ

 $\label{eq:constraint} \begin{array}{c} What \text{ is } \gamma \text{ and why is it interesting?} \\ Calculating ~\gamma \text{ for different DE models} \\ \textbf{Fisher matrix analysis for EUCLID with a novel parametrisation} \\ Conclusions \\ \hline \end{array}$

Weak Lensing

- We consider 2 cases for γ
 - γ free parameter parametrised by γ_0 and γ_1 but equal for all redshift bins

• γ dependent on dark energy parameters w_0 and w_1

Komatsu et al. 2011

-0.4

Conclusions and outlook

- $\bullet\,$ It is important to study and constrain γ to distinguish between DE models
- We found an analytic expression for γ for a slowly varying equation of state w = w(a)
- We found that the Fisher matrix analysis for future surveys such as Euclid tell us we will be able to distinguish between DE models
- Future work (already in progress!)
 - Study the growth index for other theoretical models and use the forecasts to see if it will be possible to rule them out
 - Study the scale dependence of the growth index
 - Study the role of DE perturbations in the growth of matter
 - Add the forecasts from different observables to reduce errors

 $\label{eq:constraint} \begin{array}{c} \mbox{What is γ and why is it interesting?}\\ \mbox{Calculating γ for different DE models}\\ \mbox{Fisher matrix analysis for EUCLID with a novel parametrisation}\\ \mbox{Conclusions}\\ \end{array}$

Thank you for listening!

Fisher matrix formalism

• Observed galaxy power spectrum:

$$P_{obs}(z,k) = \frac{D_{Ar}^{2}(z)H(z)}{D_{A}^{2}(z)H_{r}(z)}G^{2}(z)b(z)^{2}(1+\beta\mu^{2})^{2}P_{0r}(k) + P_{shot}(z)$$

Seo, Eisenstein 2003

- r: Values assumed for the reference cosmology
- μ : direction cosine within the survey
- *P*_{0r}: present matter power spectrum for the fiducial cosmology (CAMB output)
- $\beta(z)$: encodes distortion induced by redshift. $\beta(z) = \frac{\Omega_m^{\gamma}(z)}{b}$
- $(1 + \beta \mu^2)$: accounts *only* for linear distortion in redshift space
- Bias b: We only see baryons, so we assume $\delta_b = b\delta_m$. Assumed to be scale independent on large scales. We use $b = \sqrt{1+z}$
- $P_{shot}(z)$: Shot noise assumed Poissonian $P_{shot} \sim \frac{1}{nP_{gal}}$

Fisher matrix formalism

• Total galaxy power spectrum including the errors on redshift:

$$P(z;k) = P_{obs}(z;k) e^{k^2 \mu^2 \sigma_r^2}$$

where $\sigma_r = \frac{\delta z}{H(z)}$ and $\delta z = 0.001(1+z)$.

• Fisher matrix elements (assuming Gaussian likelihood)

$$F_{ij} = 2\pi \int_{k_{min}}^{k_{max}} \frac{\partial \log P(k)}{\partial \theta_i} \frac{\partial \log P(k)}{\partial \theta_j} \cdot V_{eff} \cdot \frac{k^2}{8\pi^3} \cdot dk$$

where $V_{eff} = \int \left[\frac{n(\vec{r})P(k,\mu)}{n(\vec{r})P(k,\mu)+1}\right]^2 d\vec{r} = \left[\frac{n(\vec{r})P(k,\mu)}{n(\vec{r})P(k,\mu)+1}\right]^2 V_{survey}$ and
 $\mu = \vec{k} \cdot \hat{r}/k$

 The k_{max}(z) is evaluated at z of the corresponding bin chosen to avoid non-linearity problems both in spectrum and bias ⇒ we choose values from 0.11h/Mpc for small z bins to 0.25h/Mpc for the highest z bins.

Weak Lensing

• The convergence weak lensing spectrum

$$P_{ij}(\ell) = H_0^3 \int_0^\infty \frac{dz}{E(z)} W_i(z) W_j(z) P_{nl} \left[P_l \left(\frac{H_0 \ell}{r(z)}, z \right) \right]$$

Hu, Jain 2004

• Fisher matrix elements

$$F_{\alpha\beta} = f_{sky} \sum_{\ell} \frac{(2\ell+1)\Delta\ell}{2} \partial(P_{ij})_{,\alpha} C_{jk}^{-1} \partial(P_{km})_{,\beta} C_{mi}^{-1}$$

where $C_{jk} = P_{jk} + \delta_{jk} \langle \gamma_{int}^2 \rangle n_j^{-1}$