Inflation from the supersymmetry breaking sector and the reheating of the universe

Kohei Kamada (RESCEU, the Univ. of Tokyo)

based on KK, Y.Nakai and M.Sakai, to appear

Introduction

Inflation... solution of many cosmological problems horizon/flatness problem, origin of primordial perturbation

How to embed inflation in the model of high energy physics?

2011年3月22日火曜日

Inflation models embedded in high energy physics models

-String inspired models ('04 Kachru+ and so on...) -Right-handed scalar neutrino ('93 Murayama+) -Flat direction in the MSSM ('06 Allahverdi+) -Standard model Higgs ('08 Bezrukov+, '11 KK+) -and so on...

This talk -> Inflation from SUSY-breaking sector

- 1. Introduction
- 2. SUSY & its breaking
- 3. SUSY-breaking and inflation model
- 4. Problems in the scenario and the solution
- 5. Conclusion

Why SUSY ?

✓ SUSY (supersymmetry) is one of the most promising models beyond the standard model of particle physics

- Hierarchy problem, gauge coupling unification

$$\begin{split} m_{\rm Higgs}^2 &= m_{\rm Higgs,0}^2 + - \begin{array}{l} \swarrow \\ - \end{array} \begin{array}{l} & - \end{array} \end{array}$$
$$\simeq m_{\rm Higgs,0}^2 + m_{\rm soft}^2 \end{array}$$

Why SUSY-breaking ?

✓ SUSY predicts "SUSY particles" whose masses and other properties are the same as the SM particle other than their spin.

✓ SUSY must be broken at some high-energy scales outside the MSSM sector

Otherwise SUSY particles must have been detected already.

Here we consider SUSY-breaking model mediated by SM gauge interactions

✓ Uplifted SUSY-breaking vacuum Φ (moduli) ✓ $ρ, \bar{\rho}, Z, \bar{Z}$ interact with SM gauge boson and transmit SUSY-breaking effect

scalar mass

gaugino mass

Here we consider SUSY-breaking model mediated by SM gauge interactions

✓ Uplifted SUSY-breaking vacuum Φ (moduli) ✓ $\rho, \bar{\rho}, Z, \bar{Z}$ interact with SM gauge boson and transmit SUSY-breaking effect ✓ $Y, \chi, \bar{\chi}$ confirm the stability of the SUSYbreaking vacuum

All the fields are needed for SUSY-breaking !

parameters of MSSM fields are determined by model parameters.

We find that hybrid inflation can be embedded in this SUSY-breaking sector

waterfall fields become tachyonic $@|Y| \simeq \frac{m}{\sqrt{h_Y}}$ and inflation ends.

primordial perturbation: $\mathcal{P}_{\mathcal{R}}^{1/2} \simeq \frac{4\sqrt{6\pi}}{3} \frac{m^3}{h_Y^{5/2} M_{\rm pl}^3}$

small tensor perturbation

- . $n_s \simeq 1$
- small non-gaussianity

Is that all?

Problems in inflation models embedded in the SUSY-breaking sector

Are SM sector fields thermalized properly?
 Is the SUSY-breaking vacuum correctly selected?
 Are not undesirable fields such as gravitinos
 substantially produced?

-Inflaton decays into SM sector through SM gauge interaction. -SUSY-breaking sector fields except for moduli fields are as heavy as inflaton and are not thermalized if $2h_Z > h_Y$.

-Inflaton decays into SM sector through SM gauge interaction. -SUSY-breaking sector fields except for moduli fields are as heavy as inflaton and are not thermalized if $2h_Z > h_Y$. -moduli field stabilizes near the SUSY-breaking vacuum during inflation and starts oscillation later.

-Inflaton decays into SM sector through SM gauge interaction. -SUSY-breaking sector fields except for moduli fields are as heavy as inflaton and are not thermalized if $2h_Z > h_Y$. -moduli field stabilizes near the SUSY-breaking vacuum during inflation and starts oscillation later.

 $\rho_{\Phi} \propto a^{-3}$

pauge interaction. Ili fields are as $h_Z > h_Y$. g vacuum during

-moduli field oscillation can dominate the energy density of the Universe but can decay into SM sector before BBN.
-gravitinos may be produced substantially but can be diluted by moduli decay.

$$T_{\rm d} \simeq 4.4 \,\mathrm{MeV} \times \left(\frac{m_{\tilde{g}}}{3.5m_{\tilde{e}}}\right)^{-2} \left(\frac{m_{\tilde{g}}}{1.5 \,\mathrm{TeV}}\right)^3 \left(\frac{m_{3/2}}{15 \,\mathrm{GeV}}\right)^{-1} \left(\frac{m_{\Phi}}{300 \,\mathrm{GeV}}\right)^{-1/2}.$$

$$\Rightarrow \text{Gravitinos can be dark matter}$$

Gravitino production mechanism

 \checkmark gluino scattering in the thermal plasma

'05 Kawasaki Kohri and Moroi

 \Rightarrow effective at reheating

$$\Omega_{3/2}h^2 \simeq 27 \times \left(\frac{m_{\tilde{g}}}{1.5 \text{TeV}}\right)^2 \left(\frac{m_{3/2}}{15 \text{GeV}}\right)^{-1} \left(\frac{T_R}{10^{10} \text{GeV}}\right)^2$$

can be diluted by the moduli decay

$$\Delta^{-1} \simeq \frac{T_d}{T_{\rm dom}} \simeq 10^{-3}$$

✓ moduli decay '07 lbe and Kitano

$$\Phi \to \psi_{3/2} \psi_{3/2} \qquad \Omega_{3/2} h^2 \simeq 0.033 \times \left(\frac{m_{\tilde{g}}}{3.5m_{\tilde{e}}}\right)^2 \left(\frac{m_{\Phi}}{300 \text{GeV}}\right)^{9/2} \left(\frac{m_{\tilde{g}}}{1.5 \text{TeV}}\right)^{-3}$$

Constraints on the model

✓ amplitude of primordial perturbation

$$\square \mathcal{P}_{\mathcal{R}}^{1/2} \simeq 4.9 \times 10^{-5}$$

✓ moduli must decay before BBN

 $rightarrow T_d \gtrsim 2 \mathrm{MeV}$

 \checkmark Gravitinos must not overclose the Universe

 $\implies \Omega_{3/2}h^2 \lesssim 0.11$

These conditions determine the allowed parameter region

Allowed parameter region

$$m_{\Phi} = 300 \text{GeV}, \quad \frac{m_{\tilde{g}}}{m_{\tilde{e}}} = 3.5, \quad h_Y \simeq 2 \times 10^{-3}$$

Allowed parameter region

 $m_{\Phi} = 300 \text{GeV}, \quad m_{\tilde{g}} \simeq 1.5 \text{TeV}, \quad h_Y \simeq 2 \times 10^{-3}$

Conclusion & Discussion

✓ Inflation model embedded in SUSY-breaking model
 ✓ Successful inflationary scenario and reheating
 ✓ Gravitino dark matter

✓ Problems

-cosmic string

ightarrow modification of vacuum structure, smooth hybrid inflation

-baryogenesis → Affleck-Dine mechanism?

new baryogenesis mechanism associated with SUSY-breaking sector

Appendix

-gauge mediation

⇒ No Flavor Changing Neutral Current Problem

-meta-stable vacuum

- \Rightarrow Relatively easy model building
 - Sizable gaugino mass is generated (thanks to the R-breaking term of Z, \overline{Z})

One of the most successful SUSY-breaking models !

soft mass parameters

gravitino mass
$$m_{3/2} = \frac{\mu^2}{\sqrt{3}M_{\rm Pl}},$$

gaugino/scalar mass

$$m_{\lambda_i} \simeq \frac{g_i^2}{16\pi^2} F_{\Phi} \frac{\partial}{\partial \Phi} \log \det M,$$

$$m_{\tilde{f}}^2 \simeq \sum_i C_2^i \left(\frac{g_i^2}{16\pi^2}\right)^2 |F_{\Phi}|^2 \frac{\partial^2}{\partial \Phi \partial \Phi^{\dagger}} \sum_s \left(\log |M_s|^2\right)^2,$$

$$\begin{split} m_{\lambda_i} &\simeq \frac{g_i^2}{16\pi^2} \, \frac{h_{\rm Y} h_{\Phi}}{h_Z^2} \, \frac{\mu^2}{m} \, \frac{m_{\rm Z}}{m}, \\ m_{\tilde{f}}^2 &\simeq \sum_i C_2^i \left(\frac{g_i^2}{16\pi^2}\right)^2 \frac{h_{\rm Y} h_{\Phi}^2}{h_Z^2} \, \frac{\mu^4}{m^2} \end{split}$$

moduli parameters

Effective Kahler

$$K_{\text{eff}} \simeq |\Phi|^2 - \frac{N}{32\pi^2} \left[h_{\Phi} m_Z \left(\Phi + \Phi^{\dagger} \right) + h_{\Phi}^2 |\Phi|^2 - \frac{1}{8} \frac{h_Y h_{\Phi}^3}{h_Z^2} \frac{m_Z}{m^2} |\Phi|^2 \left(\Phi + \Phi^{\dagger} \right) + \frac{1}{8} \frac{h_Y h_{\Phi}^4}{h_Z^2} \frac{1}{m^2} |\Phi|^4 + \mathcal{O}(m_Z^2) \right].$$

@meta stable vacuum

$$|\Phi_0| \simeq \frac{1}{2} \frac{m_Z}{h_\Phi}, \quad \arg \Phi_0 = 0,$$

 $m_\Phi^2 \simeq \frac{N}{64\pi^2} \frac{h_Y h_\Phi^4}{h_Z^2} \frac{\mu^4}{m^2} \equiv m_{CW}^2.$

Hybrid inflation in the SUSY-breaking sector

Hybrid inflation in the SUSY-breaking sector

Inflaton and waterfall fields oscillate around the potential minimum

Hybrid inflation in the SUSY-breaking sector

Inflaton and waterfall fields oscillate around the potential minimum

Inflaton and waterfall field decay/ gravitino production/ moduli starts oscillation

(moduli is stabilized at the origin during inflation)

Hybrid inflation in the SUSY-breaking sector

moduli oscillation (may) dominate the energy density of the Universe

gravitino production/ moduli starts oscillation (moduli is stabilized at the origin during inflation)

Hybrid inflation in the SUSY-breaking sector

gravitino production/ moduli starts oscillation (moduli is stabilized at the origin during inflation)

moduli oscillation (may) dominate the energy density of the Universe

moduli decay reheats the Universe

Hybrid inflation in the SUSY-breaking sector

gravitino production/ moduli starts oscillation

(moduli is stabilized at the origin during inflation)

moduli oscillation (may) dominate the energy density of the Universe

moduli decay reheats the Universe

Precise reheating temperature Gravitino Dark Matter

testable prediction

✓ Hybrid inflation is embedded in the SUSY-breaking model✓ Moduli oscillation can dilute gravitinos

Hybrid inflation

moduli field oscillates around the meta-stable vacuum

All the fields are needed for SUSY-breaking !!