# Forward modeling TDE detection rates in various galaxy types



#### Schawinski+ 2014

#### Nathaniel Roth JSI Fellow UMD College Park and NASA GSFC

Collaborators: Sjoert van Velzen Erica Hammerstien Suvi Gezari Brad Cenko Richard Mushotzky ZTF nuclear transient team

# Some open questions in TDE demographics

- Are we finding TDEs at the overall rate we expect from dynamical calculations of stellar disruption rates? (selection effects?)
- Why do we seem to be finding TDEs at especially high rates in rare galaxy types? (selection effects?)

# Galaxy bi-modality



Schawinski+ 2014

# ZTF TDEs in the green valley

#### ZTF

#### **Previous surveys**



van Velzen et al 2020 (figures by Erica Hammerstein)

# Past TDEs in the green valley



Law-Smith+ 2017

#### "E + A" galaxies (type of post-starburst galaxy)



French, Arcavi & Zabludoff 2016

Forward model TDE detection rates and how they depend on host galaxy properties

Catalog of galaxy hosts Disruption rate in each galaxy UV/optical luminosity function of flares

Survey selection criteria Forward model TDE detection rates and how they depend on host galaxy properties

#### Dust obscuration from host

Catalog Disruption of galaxy rate in each hosts galaxy UV/optical luminosity function of flares

Survey selection criteria

# Synthetic galaxy catalogue Van Velzen 2018

| Column Name    | Unit                          | Comments                                                                       |  |  |  |
|----------------|-------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Z              |                               | Redshift                                                                       |  |  |  |
| ra             | deg                           | R.A. (of original galaxy)                                                      |  |  |  |
| dec            | deg                           | Decl. (of original galaxy)                                                     |  |  |  |
| mass           | $M_{\odot}$                   | Total galaxy mass from NYU-VAGC based on ugrizJHK photometry                   |  |  |  |
| B300           | $yr^{-1}$                     | Specific SFR over the past 300 Myr from NYU-VAGC based on ugrizJHK photometry  |  |  |  |
| B1000          | yr <sup>-1</sup>              | Specific SFR over the past Gyr from NYU-VAGC based on ugrizJHK photometry      |  |  |  |
| sSFR           | yr <sup>-1</sup>              | Specific SFR from the MPA-JHU catalog (their specsfr_fib_p50 column)           |  |  |  |
| BT             |                               | Bulge-to-total ratio based on Lackner & Gunn (2012) measurements in the r band |  |  |  |
| r50_kpc        | kpc                           | Effective radius based on Sérsic fit from NYU-VAGC                             |  |  |  |
| sersic_n       |                               | Sérsic index from NYU-VAGC                                                     |  |  |  |
| sigma          | $km s^{-1}$                   | Velocity dispersion as estimated using the virial theorem (Equation (6))       |  |  |  |
| sigma_SDSS     | $\mathrm{km} \mathrm{s}^{-1}$ | Velocity dispersion from SDSS pipeline (as reported in the NYU-VAGC)           |  |  |  |
| sigma_SDSS_err | km s <sup>-1</sup>            | Uncertainty on sigma_SDSS                                                      |  |  |  |
| MBH_sigma      | $M_{\odot}$                   | Black hole mass as estimated from the velocity dispersion (Equation (8))       |  |  |  |
| MBH_bulge      | $M_{\odot}$                   | Black hole mass as estimated from the bulge mass (Equation (8))                |  |  |  |
| m_r            | AB mag                        | Apparent magnitude in the r band                                               |  |  |  |
| M_r            | AB mag                        | Absolute magnitude in the r band (k-corrected)                                 |  |  |  |
| m_g            | AB mag                        | Apparent magnitude in the $g$ band                                             |  |  |  |
| M_g            | AB mag                        | Absolute magnitude in the $g$ band (k-corrected)                               |  |  |  |
|                |                               |                                                                                |  |  |  |

|         |        | Table 5   |        |         |
|---------|--------|-----------|--------|---------|
| Columns | of the | Synthetic | Galaxy | Catalog |

~ 6 million galaxies ( $m_r < 22$  on 100 square degrees of sky)



# Some galaxy properties that influence TDE rate

- Black hole mass
  - Hills mass
  - Size of sphere of influence
- Stellar surface brightness profile, which encodes information about stellar orbits
- Overall density of stars in nucleus

# Some galaxy properties that influence TDE rate

- Black hole mass
  - Hills mass
  - Size of sphere of influence
- Stellar surface brightness profile, which encodes information about stellar orbits
- Overall density of stars in nucleus

# Hills mass

For a given  $M_{\star}$  (and  $R_{\star}$ ), there is a mass limit  $M_{H}$ such that if  $M_{BH}$ > Mhills, the star is tidally disrupted inside the BH event horizon

$$M_{H} = M_{\star}^{-1/2} \left(\frac{c^{2} R_{\star}}{2G}\right)^{3/2} \simeq 1 \times 10^{8} M_{\odot} \left(\frac{R_{\star}}{R_{\odot}}\right)^{3/2} \left(\frac{M_{\star}}{M_{\odot}}\right)^{-1/2}$$

Hills 1975; equation taken from Stone+ 2018

This, combined with the present-day mass function in the galaxy (related to IMF) puts limits on rate of potentially visible flares Disruption rate depends on stellar surface brightness profile

"Nuker  $\gamma$ " – inner power-law of surfacebrightness profile

$$\dot{N}_{\mathrm{TDE}} \propto \gamma^{0.705}$$

Stone & Metzger 2016

 $\gamma$  can be estimated from Sersic index n and galaxy half-light radius

### UV/optical flare luminosity function

$$\frac{\partial N_{\rm TDE}}{\partial V_c \,\partial t \,\,\partial \log_{10} L} \propto L^{-1.5}$$



van Velzen 2018

# Bounds on flare luminosity function Well-defined limits on *maximum* peak luminosity



Limit on the faint end is trickier: for now, iPTF16fnl

# Survey selection (to match ZTF)

- For detection:
  - Require peak  $m_g$ ,  $m_r < 19$
  - Require peak  $m_g m_r < 0$
  - Require peak flux of transient to be brighter than host PSF light + 0.5 mags in all bands
- Survey area (15,000 deg<sup>2</sup>) and duration (1.5 years) used to set the normalization of mock detection rates

# Procedure

- For each galaxy in the mock catalogue:
  - use the galaxy properties (Nuker  $\gamma$ ) to set overall rate normalization
  - Generate 5000 random disruptions
    - Sample the galaxy stellar mass function, and determine whether there is direct capture (i.e. account for Hills mass)
    - For stars that disrupt outside the event horizon, sample flare bolometric luminosity and temperature
    - Determine whether the flare would be detected by survey
  - Use these to compute detection rate for flares from the galaxy, and probability distributions of the properties of observed flares
- Bin results for all galaxies

# Results

## Number of galaxies in flux-limited survey



0.7 <sup>sq deg)</sup> 10% 0.6 30% 20% 0000 500008 0.5 22 40000 0.4 r-mag Ν 30000 0.3 50% of galaxies 20000 0.2 10000 0.1 # 0.0 5 8 9 4 6  $\log_{10} (M_{\rm BH}/M_{\odot})$ 

#### If the TDE rate were the same in every galaxy

## Account for Hills mass



#### Account for Hills mass and Nuker $\gamma$





### Account for dust obscuration in host





### Compare with ZTF detections



### Mock distribution of observed BH masses



Mock observed UV/opt peak luminosity distribution



# Compare with past surveys



Wevers+ 2019

## Number of galaxies in flux-limited survey



### Account for Hills mass





#### Apply survey selection cuts on flux



#### Account for dust obscuration in host



#### Plot ZTF hosts with existing SFR measurements



## Results galaxy u - r



# Conclusions

- The over-representation of TDEs detected in the green valley and lower mass red galaxies is partially reproduced in forward modelling using standard assumptions...
- ... but only if we account for what we know about dust in starforming galaxies, and how that should affect detection efficiency
- We expect to be missing at least half the flares that are intrinsically bright enough to be detectable because they are obscured by dust or because they don't stand out enough against the light of their host
- The modeling favors slightly more quiescent galaxies than the real observations, and higher black hole masses
- We now have a tool to predict TDE detections in various galaxy populations, which is adaptable and can be applied to future surveys