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Thoretical (half-conjectured) Phase Diagram of QCDThoreticalThoretical (half(half--conjectured) Phase Diagram of QCDconjectured) Phase Diagram of QCD
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Phase transitions large fluctuations owing to strong coupling 
around the critical points. 
There may exist also other low-lying 
(hadronic)  excitations  in the QGP phase.

density fluctuations

Here we explore how they affect
quark quasi-particle picture!
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The mechanism of the pseudogap in High-TcSC is still controversial, but see,
Y. Yanase et al,  Phys. Rep. 387 (2003),1, where the essential role of pair fluc. is shown. 

:Anomalous depression of the density of states
 near the Fermi surface in the normal phase.  Pseudogap

Phase diagram of cuprates
to be high-Tc

 
superconductor

Renner et al.(‘96)

Lesson from condensed matter physics on strong correlations

(hole doping)

A typical non-Fermi liq. behavior!
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μ = 400 MeV

Possible pseudogap formation in heated quark matter
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Pseudogap is
formed above Tc
of CSC  in heated
quark matter!

How?
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sharp peak at the origin
(= diffusive over-damping mode)
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Mechanism of the pseudogap
 

formation
1. Development of precursory diquark fluctuations above Tc

2.Coupling of quarks with 
the diquark fluctuations
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Cherenkov-like emission
 

of 
diquark mode around Fermi energy
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quark self-energy

Depression of the quark spectral
Function around the Fermi energy
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Janko, Maly, Levin, PRB56,R11407 (1995)

Mixing between particles and holes
owing to the Landau damp. by the
collective diquark mode.  

level repulsion of energy level
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3. Soft modes of chiral transition and  
anomalous quasi-quark spectrum 

3. Soft modes of 3. Soft modes of chiralchiral transition and  transition and  
anomalous quasianomalous quasi--quark spectrumquark spectrum



Chiral Transition and the collective modesChiralChiral Transition and the collective modesTransition and the collective modes

c.f. The sigma as the Higgs particle in QCD

; Higgs field
Higgs particle

0

para sigma
para pion

The low mass sigma in vacuum is now established:
pi-pi scattering;  Colangero, Gasser, Leutwyler(’06) and   many others     
Full lattice QCD ; SCALAR collaboration (’03)

q-qbar, tetra quark, glue balls, or their mixed st’s?
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Digression:The poles of the S matrix in the complex mass plane f
the sigma meson channel: 

complied in Z. Xiao and H.Z. Zheng (2001)

Softening ?

See also, I. Caprini, G. Colangero and H. Leutwyler, PRL(2006);
H. Leutwyler, hep-ph/0608218 ;  M_sigma=441 – i 272 MeV
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The  spectral function of the degenerate ``para-pion” and the 
``para-sigma” at T>Tc for the chiral transition: Tc=164 MeV

T. Hatsuda and T.K. (1985)
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PNJL model

S. Rößner,  T. Hell, C. Ratti,
W. Weise.arXiv:0712.3152 

[hep-ph]

K. Fukushima (2004)
C. Ratti,  M. Thaler, 
W. Weise (2006)

Para-pion
 

and para-sigma modes are still seen in PNJL model

P=Polyakov-loop coupled 

W. Weise, talk
at NFQCD2008 at
YITP, Kyoto.



Quark Self-energy at finite T
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Digression: Quarks at very high T (T>>Tc) 
---- physical origin of  plasmino and  thermal mass --- 

Digression:Digression: Quarks at very high T (T>>Quarks at very high T (T>>TcTc)) 
-------- physical origin of  physical origin of  plasminoplasmino and  thermal massand  thermal mass ------
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We incorporate the fluctuation mode into a single particle Green
 

function of a 
quark through a self-energy.
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Non self-consistent T-approximation (1-loop of the fluctuation mode)

Quarks coupled to Quarks coupled to chiralchiral soft modessoft modes near near TcTc

N.B. This is a complicated multiple integral owing to the 
compositeness of the para-sigma and para-pion modes.
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0 0 0 0 0( , ) ( , ) ( , )p p p p p pρ ρ γ ρ γ− −+ +Λ Λ= + Kitazawa, Nemoto and T.K.,
Phys. Lett. B633, 269 (2006),
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Quasi-dispersion relation for eye-guide;

•Three-peak structure emerges.
•The peak around the origin is
the sharpest.

0
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Fluctuations of the chiral codensateFluctuations of the Fluctuations of the chiralchiral codensatecodensate
sharp peak 
in time-like region

σ , π-mode

Spectrum of the fluctuations
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quark + massive boson.
( , )niωΣ =p

Near the critical point , the soft-modes may be represented
by an elementary boson. Yukawa model!

Quark Spectrum in Yukawa modelsQuark Spectrum in Yukawa modelsQuark Spectrum in Yukawa models
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The 3-peak structure emerges irrespective of the 
type of the  boson at                     .BT m∼

Kitazawa, Nemoto and T.K.,
Prog. Theor. Phys.117, 103(2007),

g=1 , T/m=1.5

Massie scalar/pseudoscalar boson Massie vector/axial vector boson

Remark: Bosonic excitations in QGP may includeσ, π, ρ, J/ψ, … /
glue balls… How about the case of Vector manifestaion.(B-R,H-Y-S)

(at one-loop)



quark anti-q hole quark

anti-q quark hole anti-q

quark part:

anti-quark part:

The level crossing is shifted by the mass 
of the fluctuation modes.

Mechanism of the 3Mechanism of the 3--peak peak fromationfromation
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DiscussionsDiscussionsDiscussions



The complex quasi-quark pole --- ‘Gauge independence’The complex quasiThe complex quasi--quark pole quark pole ------ ‘‘Gauge independenceGauge independence’’

The three residues comparable at T ~ mb which support 3-peak structure

There are three  poles corresponding 
to the three peaks in the spectral 
function; the pole distribution is 
symmetric with respect to the 
imaginary axis because mf = μ

 
= 0 

The sum of the three residues 
approximately satisfy the sum rule

Pole position

T-dependence of the residuesT↑

Mitsutani, Kitazawa, Nemoto, T.K.
Phys. Rev. D77, 045034 (2008)



Finite quark mass effects  Finite quark mass effects  Finite quark mass effects  

•There still exist three poles.
•The pole at T=0 (red) moves toward 
the origin as T is raised.
•The pole in the  ω

 
< 0-region  has a 

larger imaginary part than that  in the 
positive-ω

 
region for the same T.

•The residue at the pole in the negative 
ω

 
region is suppressed at T ~ mb , 

corresponding to the suppression of the 
peak in the negative-energy region.
•The sum of the residues approximately 
satisfy the sum rule also in this case.

mf / mb = 0.1

Mitsutani, Kitazawa, Nemoto, T.K.
Phys. Rev. D77, 045034 (2008)

Re Z



mf / mb = 0.3mf / mb = 0.2

The pole at T=0 moves toward the 
origin as T is raised. 
This behavior is qualitatively the same 
as in the case of lower masses.

The pole at T=0 moves toward the 
large-ω

 
region as T is raised.

This behavior is qualitatively 
different from that in the smaller 
mass cases..

Structure change of the pole behaviorStructure change of the pole behaviorStructure change of the pole behavior

crit
fm

The physics contents of the three poles change 
at a critical  mass       . We find / 0.21crit

f bm m ≈



Beyond one-loopBeyond oneBeyond one--looploop
Schwinger-Dyson approach for 
lin. sigma model; Harada-Nemoto(’08)

The three peak structure
 

in the 
quark spectral function is still there
for small momenta,
although the central peak gets to
have a width

 
owing to

multiple scattering.

Possible confirmation in Lattice QCDPossible confirmation in Lattice QCDPossible confirmation in Lattice QCD

Unquenched lattice simulation with hopefully chiral fermion
action on a large lattice is
necessary for accommodate the possible chiral fluctuations
with energy comparable to 200cT ∼ MeV.

Harada, Nemoto,0803.3257(hep-ph)



Future problems:
Full self-consistent calculation
Confirmatin in the lattice QCD
experimental observables ; eg. Lepton-pair production (PHENIX?)

transport coefficients
Soft mode (density-fluctuations) at the CEP and quark spectrum

4. Summary and concluding remarks4. Summary and concluding remarks4. Summary and concluding remarks

In the fermion-boson system with mF

 

<<mB

 

, the fermion spectral function 
has a 3-peak structure at 1-loop approximation at T ~ mB

 

.

The physical origin of the 3-peak structure is the Landau damping of
quarks and anti-quarks owing to the thermally excited massive boson,
which induces a mixing between quarks and anti-quark hole,

If the chiral transition is close to a second order, quarks may
have a 3-peak structure in the QGP

 
phase near Tc

 

.

If a QCD phase transition is of a second order or close to that, there
should exist specific soft modes, which may be easily thermally excited.

The boson may be vector-type or glueballs.
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