How do diquark fluctuations and chiral soft modes affect di-lepton production in the deconfined phase

Teiji Kunihiro (YITP, Kyoto) CPOD2007: GSI, Germany July 9 --13, 2007 in collaboration with M. Kitazawa and Y. Nemoto

A conjectured QCD phase diagram

A conjectured QCD phase diagram

Contents

- Part 1 The soft mode of CSC above Tc and lepton-pair production
- Part 2 The sigma mode above Tc at finite density and lepton-pair production

PART I

Precursory Phenomena of Color Superconductivity in Heated Quark Matter

Ref. M. Kitazawa, T. Koide, T. K. and Y. Nemoto Phys. Rev. D70, 956003(2004); Prog. Theor. Phys. 114, 205(2005),
M. Kitazawa, T.K. and Y. Nemoto, Phys. Lett.B 631(2005),157
M. Kitazawa and T. K., in preparation

The phase in the highest temperature is 2SC or g2SC.

Various CSC phases in $T-\mu$ plane

H .Abuki and T.K. Nucl. Phys. A, 768 (2006),118; with charge and color neutrality

The phase in the highest temperature is 2SC or g2SC.

Pair Fluctuations in CSC $D^{R}(\mathbf{x},t) = -2G_{C} \langle [\overline{\psi}(x)i\gamma_{5}\tau_{2}\lambda_{2}\psi^{C}(x),\overline{\psi}(0)t] \rangle$

$$\left\langle \left[\bar{\psi}(x)i\gamma_5\tau_2\lambda_2\psi^C(x), \bar{\psi}(0)i\gamma_5\tau_2\lambda_2\psi^C(0) \right] \right\rangle \theta(t)$$

μ

T

Spectral Function of the diquark excitations

Existence of large pair fluctuations

M.Kitazawa, T. Koide, T. K., Y. Nemoto, PRD 65, 091504 (2002)

> It may affect various observables even well above T_c .

Precursory Phenomena

Anomalous Self-energy of Photon; Aslamasov-Larkin term

Dilepton-pair Production

-per invariant mass

 $\frac{dR_{ee}}{dM^2} = \int \frac{d^3q}{2q^0} \frac{dR_{ee}}{d^4q}$

— from AL-term
----- from free quarks

M. Kitazawa and T.K., (2005), unpublished

- Prominent enhancement at *M*<150MeV.
- The peak becomes sharp as $\varepsilon \rightarrow 0$.

Possible experimental observable for the CSC to be seen in FAIR(GSI)? Maybe difficult, unfortunately, because of the too-low mass enhancement.

Remarks:

* Effects of the Maki-Thompson term

*If Tc is higher, say, 100 MeV or higher, the enhancement is more prominent.

How about, the lepton pair emission from the color-counducting phase?

P. Jaikumar R. Rapp and I. Zahed('02)

Enhancement due to phton-gluon mixing in the CFL phase, and from the generalized rho meson.(not shown here)

PART II

The Case of the Chiral Transition

Chiral Transition and the sigma mode (meson)

Fig. 2. Deconfinement and chiral symmetry restoration in 2-flavour QCD: Shown is $\langle L \rangle$ (left), which is the order parameter for deconfinement in the pure gauge limit $(m_q \to \infty)$, and $\langle \bar{\psi}\psi \rangle$ (right), which is the order parameter for chiral symmetry breaking in the chiral limit $(m_q \to 0)$. Also shown are the corresponding susceptibilities as a function of the coupling $\beta = 6/g^2$.

Cf. Lattice Calculation of the *generalized masses*

F. Karsch, Lect. Note Phys. **583** (2002), 209. $N_f = 2, 8^3 \times 4$; Staggered fermion

a degeneracy of the σ and π at high T

What is the significance of the σ in hadron physics?

How about above Tc?

Interest in the nature of elementary modes in 'QGP' phase

Finite T and μ with finite quark mass

Phase diagram

Caveats

\star Effects of G_V on Chiral Restoration

- Chiral restoration is shifted to higher densities.
- The phase transition is weakened.

Asakawa, Yazaki '89 /Klimt, Lutz, &Weise '90 /T.K. '90/ Buballa, Oertel '96

What would happen when the CSC joins the game?

With color superconductivity transition incorporated

M. Kitazawa et al ('02)
(2) The first order transition between χSB and CSC phases is weakened and eventually disappears.

(3) The region of **the coexisting phase becomes broader**.

Appearance of the coexisting phase becomes robust.

(4) Another end point appears from lower temperature, and hence **there can exist** <u>two end points</u> in some range of G_V ! $0.33 \sim G_V \sim 0.38$

Smooth variation of the quark condensate with baryon density?

S. Klimt, M. Lutz and W. Weise, PLB249 ('90)

Fig. 1. Quark mass m_{μ} as a function of temperature T and quark density ρ_{μ} at $\rho_s = 0$.

So strong vector coupling making the chiral transition crossover at finite density!

Phase diagram

What is the soft mode at CP?

Dilepton production rate from the sigma mode at T>Tc

10³ 1.01 Tc 1.1 Tc 1.5 Tc p=40 MeV 2 Tc 10² $\Lambda^2 p(\omega, p=40 \text{ MeV})$ 10⁻¹ 10⁻² 100 200 300 400 500 600 0 ω[MeV]

Spectral function of the sigma mode

What is contributions of the sigma mode?

Enhancement around $m_{\sigma} \approx 2M_{q}$.

s p

Vector-scalar mixing

The above vector-scalar mixing exists if

 $\mu \neq 0$ $m_q \neq 0$ $q \neq 0$ **Not SU(3) limit** $(m_u = m_d = m_s)$ cf: quark number susceptibility

cf: dilepton production due to $\sigma - \omega$ and $\sigma - \gamma$ mixings in hadronic matter Weldon,1992 Wolf, Friman, Soyeur, 1998 without the notion of chiral transition, nor softening of the sigam

through the vs-mixing

Kunihiro,1991

ex: SU(2) symmetry
$$(m_q = m_u = m_d)$$

TT(-) . (---

$$\bigcirc \propto N_C(e_u + e_d) m_q \int d^3 k F(q_\mu, \vec{k}) [f(E_k - \mu) - f(E_k + \mu)]$$

Di-electron Production Rate along T-axis

Di-muon Production Rate

along T-axis

Di-electron Production Rate

along a pseudo-critical lin

Di-muon Production Rate

along a pseudo-critical lin

CERES ('05)

What is the origin of an enhancement around .0.3 GeV?

Remarks on the sigma mode in the hadronic phase at finite T and density.

Lattice Calculations in full QCD of the sigma mass

The poles of the S matrix in the complex mass plane for the sigma meson channel:

See also, I. Caprini, G. Colangero and H. Leutwyler, PRL(2006); H. Leutwyler, hep-ph/0608218; M_sigma=441 – i 272 MeV

A conjectured QCD phase diagram

K. Saito et al (1998)

Fig. 6. Spectral function for the σ at $\rho_B / \rho_0 = 2$.

see also, G. Wolf et al(1998); O. Teodorescu et al (2001)

Summary and concluding remarks

- The notion of the soft modes of QCD phase transitions was emphasized; they may be hadronic excitations above Tc.
- The soft modes of color-superconductivity above Tc may cause an enhancement of the electronpair production in very-low mass region.
- Off the chiral limit, the lepton-pair production due to the specific mode around the QCD critical point is enhanced around 2 Mq ~ 300-400MeV, which might account (at least partly) for the excess of lepton pairs seen in CERES experiment.