Change in the Quasi-particle Picture in Association with QCD Phase Transitions

Teiji Kunihiro (YITP, Kyoto)

Korea-Japan Joint workshop of Nuclear Physics at Korea Physics Society Meeting October 21 – 23, 2004 Jeju University, Jeju, Korea

1.Introduction

QCD phase diagram and quasi-particles

Plasmino excitation

How about when the temperature Is lowered close to T_c ?

The wisdom of many-body theory tells us: If a phase transition is of 2nd order or weak 1st order, ∃soft modes ; the fluctuations of the order parameter

> eg. softening of 2+ phonon -→ quadrupole deformation Gamow-Teller GR ; a soft mode of pion condensation (T.K., 1981)

Chiral Transition = a phase transition of QCD vacuum,

 $\langle \bar{q}q \rangle$ being the order parameter. Lattice QCD; There can be hadronic excitations (para pion and sigma) as the soft mode of the chiral transition in the ``QGP" phase.

> T. Hatsuda and T. K., Phys. Rev. Lett.55('85)158; PLB71('84),1332 Prog. Theor. Phys 74 (1985), 765:

Cf. T<T_c; the σ meson becomes the soft mode of chiral restoration at $T \neq 0$ and/or $\rho_B \neq 0$: $m_\sigma \rightarrow 0$, $\Gamma_\sigma \rightarrow 0$

QCD phase diagram and quasi-particles

2. Precursory Phenomena of Color Superconductivity in Heated Quark Matter

Ref. M. Kitazawa, T. Koide, T. K. and Y. Nemoto, Phys. Rev. D65,091504 (2002); D70, 0965003 (2004)

QCD phase diagram

Color Superconductivity; diquark condensation

- •Dense Quark Matter:
 - quark (fermion) system
 - with attractive channel in
 - one-gluon exchange interaction.

 \square Cooper instability at sufficiently low *T*

 \implies SU(3)_c gauge symmetry is broken!

• $\Delta \sim 100 \text{MeV}$ at moderate density $\mu_q \sim 400 \text{MeV}$

of Cooper pairs

may be relevant to newly born neutron stars or intermediate states in heavy-ion collisions (GSI, J-PARC)

Collective Mode in CSC

• **Response Function of Pair Field**

Linear Response • external field: $H_{ex} = \int d\mathbf{x} \left(\Delta_{ex}^{\dagger} \overline{\psi}^{C} i \gamma_{5} \tau_{2} \lambda_{2} \psi + \text{h.c.} \right)$ • expectation value of induced pair field: $\langle \overline{\psi}(x) i \gamma_{5} \tau_{2} \lambda_{2} \psi^{C}(x) \rangle_{ex} = i \int_{t_{0}}^{t} ds \langle [H_{ex}(s), O(\mathbf{x}, t)] \rangle$ $\int \Delta_{ind}(x) = -2G_{C} \langle \overline{\psi}(x) i \gamma_{5} \tau_{2} \lambda_{2} \psi^{C}(x) \rangle_{ex} = \int dt' \int d\mathbf{x} D^{R}(x, x') \Delta_{ex}(x')$ $D^{R}(\mathbf{x}, t) = -2G_{C} \langle [\overline{\psi}(x) i \gamma_{5} \tau_{2} \lambda_{2} \psi^{C}(x), \overline{\psi}(0) i \gamma_{5} \tau_{2} \lambda_{2} \psi^{C}(0)] \rangle \theta(t)$ • Retarded Green function

• Fourier transformation $\Rightarrow \Delta^{\dagger}(\mathbf{k}, \omega_n)_{\text{ind}} = \mathcal{D}(\mathbf{k}, \omega_n) \Delta^{\dagger}(\mathbf{k}, \omega_n)_{\text{ext}}$ with Matsubara formalism

• RPA approx.:
$$\mathcal{D}(\mathbf{k}, \omega_n) = + + + \cdots$$

= $-\frac{G_C Q(\mathbf{k}, \omega_n)}{1 + G_C Q(\mathbf{k}, \omega_n)}$ with $Q(\mathbf{k}, \omega_n) = + + \cdots$

After analytic continuation to real time,

$$D^{R}(\mathbf{k},\omega) = -G_{c}Q(\mathbf{k},\omega)/(1+G_{c}Q(\mathbf{k},\omega)),$$

$$\equiv -G_{c}Q(\mathbf{k},\omega) \cdot \Xi(\mathbf{k},\omega)$$

$$\Xi^{-1}(\mathbf{k},\omega) \equiv 1+G_{c}Q(\mathbf{k},\omega).$$

The spectral function;

$$\rho(\mathbf{k},\omega) = -\frac{1}{\pi} \mathrm{Im} D^{R}(\mathbf{k},\omega)$$

An important observation: at $T = T_c$;

$$\Xi^{-1}(\mathbf{k}=\mathbf{0},\omega=\mathbf{0})=\mathbf{0}$$

Equivalent with the gap equation (Thouless criterion)

The peak of ρ becomes sharp. (Soft mode) \Longrightarrow Pole behavior • The peak survives up to $\underline{\mathcal{E} \ 0 \ . \ 2}$ $\overleftarrow{}$ lectric SC: $\underline{\mathcal{E} \ . \ 0 \ . \ 0}$

The pair fluctuation as the soft mode; --- movement of the pole of the precursory mode---

How does the soft mode affect the quark spectra?

---- formation of pseudogap ----

Ref. M. Kitazawa, T. Koide, T. K. and Y. Nemoto Phys. Rev. D70, 956003(2004);hep-ph/0309026

:Anomalous depression of the density of state near the Fermi surface in the normal phase.

Density of State in BCS theory

The gap on the Fermi surface becomes smaller as T is increased, and it closes at T_c .

• **Density of State**
$$N(\omega)$$

 $N = \int d^3 x \langle \overline{\psi} \gamma^0 \psi \rangle$
 $N(\omega) = \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \rho^0(\mathbf{k}, \omega) \iff \rho^0(\mathbf{k}, \omega) = \frac{1}{4} \operatorname{Tr} \left[\gamma^0 \operatorname{Im} G^R(\mathbf{k}, \omega) \right]$

Density of state of quarks in heated quark matter

Summary of this section

• There may exist a wide T region where the precursory soft mode of CSC has a large strength.

• The soft mode induces the pseudogap, the anomalous enhancement of the specific heat C_V

Future problems:

3. Precursory Hadronic Mode and Single Quark Spectrum above Chiral Phase Transition

QCD phase diagram and quasi-particles

Chiral Transition and the collective modes

Higgs particle

Hadronic Modes in the QGP Phase

The `para-sigma' and `para-pion'

Large

T. Hatsuda and T. K.,(1985)

The driving force leading to the phase transition should be strong enough to form the collective modes even at $T > T_c$

T. Hatsuda and T. K., Phys. Rev. Lett.55('85)158; PLB71('84),1332 ; Prog. Theor. Phys 74 (1985), 765.

FIG. 3. Dynamical quark mass $M = M_D(T, \mu) + \hat{m}$, and the masses of σ mode (m_{σ}) and π mode (m_{π}) . The dashed line denotes the 2*M* threshold from which the $q\bar{q}$ continuum starts.

The spectral function of the degenerate ``para-pion" and the ``para-sigma" at T>Tc for the chiral transition: Tc=164 MeV

T. Hatsuda and T.K. (1985)

How does the soft mode affect a single quark spectrum near Tc?

Y. Nemoto (RIKENBNL , Nagoya U.)M. Kitazawa (Kyoto)T. K. (YITP) (in preapration)

Method

low-energy effective theory of QCD
 4-Fermi type interaction (Nambu-Jona-Lasinio with 2-flavor)

 $L = \overline{q}i\gamma \cdot q + G_{S}[(\overline{q}q)^{2} + (\overline{q}i\gamma_{5}\overline{\tau}q)^{2}] \qquad \tau: SU(2) \text{ Pauli matrices}$

 $m_u = m_d = 0$ chiral limit finite m_u, m_d : future work

• Chiral phase transition takes place at Tc=193.5 MeV(2nd order).

Self-energy of a quark (above Tc)

 $G_{\rm s} = 5.5 \cdot 10^{-6} {\rm GeV}^{-2}, \Lambda = 631 {\rm MeV}$

 $\Sigma(\omega_n, \vec{p}) = \mathrm{T}\sum_m \int \frac{\mathrm{d}^3 q}{(2\pi)^3} D(\omega_n - \omega_m, \vec{p} - \vec{q}) G_0(\omega_m, \vec{q}) \xrightarrow{D(\omega_n - \omega_m, \vec{p} - \vec{q})} G_0(\omega_m, \vec{q})$

scalar and pseudoscalar parts

 $\Sigma^{R}(\omega, p) = \Sigma(\omega_{n}, p)|_{i\omega_{n}=\omega+i\varepsilon}$: imaginary time \rightarrow real time

Dispersion Relations of Quarks

Dispersion Relations

Dispersion Relations

Spectral function of the quarks

Spectral Function of Quarks

6

Resonant Scatterings

• For the $\omega > 0$ soft mode, $(\omega_q = \omega + \omega_{q'})$

Phase diagram calculated in NJL model

Finite μ dependence; asymmetry between q and q

 $(T, \mu) = (210, 50)$

Summary of this section

• Near (above) Tc, the quark spectrum at long-frequency and long wave-length is modified drastically by the soft mode for the chiral condensate, $\langle \overline{q}q \rangle$.

• The many-peak structure of the spectral function can be understood in terms of two resonant scatterings at small ω and p of a quark and an antiquark.

CSC : The Fermi surface is significant.
 Chiral: Antiquarks are significant. (antiquark holes)

Future

- finite quark mass effects. $(2^{nd} \text{ order} \rightarrow \text{crossover})$
- finite density (tricritical point, critical end-point)

•phenomenological applications

Summary of the Talk

2.precursory hadronic QCD phase diagram modes? strongly modified quark spectra 1. preformed pair fields? QCD CEP quark spectra modified? **`QGP' itself seems surprisingly** rich in physics! Condensed matter physics of strongly coupled Quark-Gluon systems will constitute a new field of fundamental physics.