Partial Wave Analysis of Strangeness Production at GeV Energies

Laura Fabbietti

Robert Münzer, Shuna Lu,

Technische Universität München Excellence Cluster – Origin of the Universe

Resonance	J ^P	Mass (GeV/c^2)	Γ (MeV/c^2)
N*(1650)	1/2	1.655	0.150
N*(1710)	1/2+	1.710	0.100
N*(1720)	3/2+	1.720	0.250
N*(1875)	3/2	1.875	0.220
N*(1880)	1/2+	1.870	0.235
N*(1895)	1/2	2.090	0.090
N*(1900)	3/2+	1.900	0.0250

p

Final State Interaction Aka: scattering length and effective range

Conversion Processes

Σ

Kaonic Bound States

Partial Wave Analysis

Bonn-Gatchina PWA Framework

A. Sarantsev et.al., Eur.Phys J A 25 2005

Cross-section Decomposition

$$d\sigma = \frac{(2\pi)^4 |A|^2}{4|k|\sqrt{s}} d\phi(P, q_1, q_2, q_3), \qquad P = k_1 + k_2$$

A : reaction amplitude $A \propto A \propto A_{tr}^{\alpha}$ (s) (Transition amplitude of wave α) k : 3-momentum of the initial particle in the CM $s - P^2$: $(k_1 + k_2)^2$ $d\varphi(P,q_1,q_2,q_3)$: invariant three-particle phase space

Parameterization of the Transition

- a_1^{α} Constant amplitude
- a_2^{lpha} Phase
 - a_3^{α} Energy dependent amp.

$$A_{tr}^{\alpha}(s) = (a_1^{\alpha} + a_3^{\alpha}\sqrt{s})e^{a_2^{\alpha}}$$

Kaonic Cluster

Theoretical Predictions

	Chiral, energy depend	lent				
	var. [DHW09, DHW08]	Fad. [BO12b, BO12a]	var. [BGL12]	Fad. [IKS10]	Fad. [RS14]	Binding Energy (BE):
BE	17–23	26–35	16	9–16	32	10-100 MeV
Γ _m	40–70	50	41	34–46	49	
Γ _{nm}	4–12	30				Mesonic Decay (I _m)
	Non-chiral, static calc	ulations				30-110 MeV
	var. [YA02, AY02]	Fad. [SGM07, SGMR07]	Fad. [IS07, IS09]	var. [WG09]	var. [FIK+11]	Non-Mesonic Decay (_{nm})
ΒE	48	50–70	60–95	40-80	40	4-30 MeV
Γ _m	61	90–110	45–80	40–85	64–86	
Γ _{nm}	12			~20	~21	

Kaonic Cluster

$$p + p \longrightarrow \Lambda(1405) + p + K^{+}$$

$$ppK^{-} + K^{+}$$

$$\longrightarrow \Lambda + p$$
Physical Background:
$$p + p \longrightarrow \Lambda + p + K^{+}$$

$$p + p \longrightarrow N^{*+} + p$$

$$\longrightarrow \Lambda + K^{+}$$

	N*+ - Resonances		J. Beringer Phys.Rev. D86 (2	2012)
Resonance	JP	Mass (GeV/c^2)	$\Gamma (MeV/c^2)$	
N*(1650)	1/2	1.655	0.150	
N*(1710)	1/2+	1.710	0.100	
N*(1720)	3/2+	1.720	0.250	
N*(1875)	3/2	1.875	0.220	
N*(1880)	1/2+	1.870	0.235	
N*(1895)	1/2	2.090	0.090	
N*(1900)	3/2+	1.900	0.0250	

Total Data Set

E. Epple, PhD Thesis, TUM 2014

Phase Space Simulation

Experimental Data

— pp→ p K⁺ Λ Phase Space

Four Best PWA Solutions

PWA Results

Four Best PWA Solutions

ppK⁻ Upper Limit Determination

Upper Limit

Measured total cross-section:

 $\sigma_{pK^+\Lambda} = 38.12 \pm 0.43^{+3.55}_{-2.83} \pm 2.67(p+p-error) - 2.9(background) \ \mu b$

Upper limit of ppK⁻ Cross Section:

Γ (MeVc ⁻²)	Cross Section (μb)
0+	1.9 – 3.9
1-	2.1 – 4.2
2+	0.7 – 2.1

Production Cross Section $\Lambda(1405)$

$$9.2 \pm 0.9 \pm 0.7 + 3.3 - 1.0 \, \mu b$$

HADES coll. (G. Agakishiev et al.) Phys. Lett. B742 (2015) 242-248.

Multi-PWA

Data Sets

Experiment	E _B [GeV]	pK⁺∧ Statistics	Status
COSY-TOF	1.96	~160k	In Preparation (not used in the analysis)
DISTO	2.15	121 k	Available
COSY-TOF	2.16	43 k	Available
COSY-TOF	2.16	~90k	In Preparation (not used in the analysis)
DISTO	2.5	304 k	Available
DISTO	2.85	424 k	Available
FOPI	3.1	0.9 k	Single PWA
HADES	3.5	21 k	Single PWA

COSY-TOF Spectrometer

Acceptance: 1°-60° (polar), 2π (azimuthal) Sec. Vertex: $\sigma_{x,y} < 1mm$, $\sigma_z < 3mm$ $\sigma_{TOF} = 300ps$ $\sigma_{MM(pK)} = 16 \ MeV/c^2$

DISTO Spectrometer

Combined Analysis

- 1. Solution for HADES+FOPI+DISTO25
 - Energy Range wide enough for energy dependence
 - High energy for higher N*-Resonances
 - Three datapoint to pin down set
 - Easier to make manual changes in parameter set
- 2. Include Stepwise further data sample
 - 1. Cosy216 / DISTO21 / DISTO28
 - Inclusion do not require further manual modification of data parameter set.

Parameter Scan

 $\mathsf{pK}\Lambda$ non resonant up to F wave * Include different N* Resonances

Solution	Α	В	С	D	E
Loglike	-67142	-67018	-66878	-66504	-66405
$\frac{\chi^2}{ndf}(ndf = 4547)$	9,50	9,98	9,98	10,01	10,34
N*(1650)	+	+	+	+	+
N*(1710)	+	+	+	+	+
N*(1720)	+	+	+	+	-
N*(1875)	+	+	-	-	+
N*(1880)	+	+	+	+	+
N*(1895)	+	+	+	+	+
N*(1900)	-	+	+	-	+
$\Sigma N(0^+)$	+	+	+	+	+

DISTO@2.14 GeV

COSY-TOF@2.16 GeV

DISTO@2.5 GeV

DISTO@2.85 GeV

No Kaonic Cluster included

FOPI

HADES

HADES - WALL

Total Cross Section

Value:

$$\sigma_{pK\Lambda} = C_1 \left(1 - \frac{S_0}{\left(\sqrt{s_0} + \epsilon\right)^2} \right)^{C_2} \left(\frac{S_0}{\left(\sqrt{s_0} + \epsilon\right)^2} \right)^{C_3} \qquad \begin{array}{c} C_1 = 4.03 \pm 0.57 \ 10^2 \\ C_2 = 1.49 \pm 0.04 \\ C_3 = 1.43 \pm 0.39 \end{array}$$

Branching Ratio

	Mass [GeV/c ²]	Width [GeV/c ²]	Γ _{ΛΚ} /Γ _{Αll} %
N(1650)S ₁₁	1.655	0.150	3-11
N(1710)P ₁₁	1.710	0.200	5-25
N(1720)D ₁₃	1.720	0.250	1-15
N(1875)D ₁₃	1.875	0.220	4±2
N(1880)P ₁₁	1.870	0.235	2±1
N(1895)S ₁₁	1.895	0.090	18±5
N(1900)P ₁₃	1.900	0.250	0-10

Cross Section

Non Resonant-Resonant: 20-80

Initial State

32

Final State Interaction in PWA

$$A_{2b}^{\beta} = \frac{\sqrt{s_i}}{1 + \frac{1}{2}r^{\beta}q^2 a_{p\Lambda}^{\beta} + iqa_{p\Lambda}^{\beta}q^{2L}/F(q,r^{\beta},L)}$$

 $a^{\beta}_{p\Lambda}$ Scattering Length

 r^{β} Effective Range of System

 $\begin{aligned} \alpha_s &= -1.43 \ \pm 0.36 \ \pm 0.09 \ fm & \alpha_t = -1.88 \ \pm 0.38 \ \pm \ 0.10 \ fm \\ r_s &= 1.31 \ \pm \ 0.24 \ \pm \ 0.16 \ fm & r_t = 1.04 \ \pm \ 0.78 \ \pm \ 0.15 \ fm \end{aligned}$

Source	${}^{1}S_{0} a_{\Lambda-p} \text{ [fm]}$	${}^{1}S_{0} r_{\Lambda-p} [\text{fm}]$	${}^{3}S_{1} a_{\Lambda-p} $ [fm]	${}^3S_1 r_{\Lambda-p} \text{ [fm]}$	$< a_{\Lambda-p} > [\text{fm}]$
This work	$-1.43 \pm 0.36 \pm 0.09$	$1.31 \pm 0.24 \pm 0.16$	$1.88 \pm 0.38 \pm 0.10$	$1.04 \pm 0.78 \pm 0.15$	
NLO ² [15]	-2.91	2.78	-1.54	2.72	-1.88 ³
LO ² [15]	-1.91	1.40	-1.23	2.13	-1.4 ³
[16]	$-1.8^{+2.3}_{-4.2}$	-	$-1.6^{+1.1}_{-0.8}$	-	-
[17]	-	-	-	-	$-1.25 \pm 0.08 \pm 0.03$
[18]	-	-	$-1.31^{0.32}_{-0.49} \pm 0.3 \pm 0.16$	-	$-1.233 \pm 0.014 \pm 0.3 \pm 0.12$

[15] Haidenbauer et al.Nuclear Physics A,915,24-58 (2013)

[16] G. Alexander et a., Phys. Rev. 173,1452 (1968).

[17] M.Roeder et al., Eur. Phys. J. A49, 157 (2013)

[18] Hauenstein 2014

The **SN** Cusp Effect

Previous Observations

Experimental Observation:

Cosy-TOF Analysis:

S.Abd El-Samad, Eur.Phys.J A49(2013)

Shaded areas: phase-space distributions

Cusp Spectral Function

The Breit-Wigner:

The Flatté parametrization:

Data Set

Combined data analysis

Experiment	E _{beam} (GeV)	Sqrt(S)(GeV)	Statistics	Polar.
DISTO[12][13]	2.14	2.75	76982	Y
DISTO[12][13]	2.5	2.85	80000	Y
DISTO[11][12][13]	2.85	2.98	182597	Y
COSY-TOF[14]	2.16	2.75	43662	Y

The data samples are fitted parallel in BG-Framework.

- The parameters are optimized to explained all data samples
- The parallel fitting assure, that different detector acceptance and efficiency for different spectrometers and beam energies are not mixed.

Results

Final coupling constants: $g_{N\Sigma} = 1.55 \pm 0.08 \times 10^{-2}$, $g_{p\Lambda} = 0.30 \pm 0.03 \times 10^{-2}$ Threhold mass value from the fit: $m_B = 2.13 \pm 0.006$ GeV/c²

Summary and Outlook

- Combined Analysis for COSY & DISTO & HADES & FOPI completed
- Systematical Analysis performed
- Excitation Function for N* and pKL extracted
- Scattering Length p- Λ separate for Singlet and Triplet
- Cusp Wave included too (not discussed here)
- Common upper limit for Kaonic Bound states to come soon