Lambda-Lambda correlation from an integrated dynamical model

Tetsufumi Hirano (Sophia Univ.)

Collaborators: Asumi Taniguchi Hiromi Hinohara Koichi Murase References for the model: TH, K.Murase, P.Huovinen, Y.Nara, Prog. Part. Nucl. Phys. **70** (2013) 108. S.Takeuchi, K. Murase, TH, P.Huovinen, Y.Nara, Phys. Rev. C **92** (2015) 044907.

Interaction between hyperonsH dibaryonNagara eventNeutron s

https://en.wikipedia.org/ wiki/Hexaquark

http://www.phys.ed.gifu-u.ac.jp/ Topics/NAGARA-j.htm

Neutron star core

http://nrumiano.free.fr/Estars/ neutrons.html

Motivation

- Investigation from a viewpoint of highenergy nuclear collisions
 - "Lots of" hyperons produced in collisions
 → Correlation functions
- Source function
 - Parametrization for source function (talks by Morita, Shah and Ohnishi)
 - Dynamical model to estimate source function (talk by Fabbietti)
- Utilize an integrated dynamical model to analyze correlation functions of hyperons

High-energy nuclear collisions

197 Au + 197 Au $\sqrt{s_{NN}} = 200 \text{GeV}$ $\sqrt{s_{NN}} = 2.76(5.02) \text{TeV}$ $\text{Collisional energy} \rightarrow \text{Thermal energy}$ $\rightarrow \text{Multi-particle production}$

Multi-particle production

A.Andronic *et al*. (2005)

of charged hadrons ~ 700 at midrapidty in central collisions

PHOBOS white paper (2005)

Expected # of Lambda ~1-10 per event # of events >~10^8

High-energy nuclear experiment as hyperon factory

Integrated dynamical model

Hadronic cascade model Microscopic description of Hadron gases Relativistic hydrodynamics Space-time evolution of **QGP+hadronic fluids** Monte-Carlo Glauber model Initial profile of matter

MC-Glauber to hydro

Initial time: $\tau_0 = 0.6$ fm Soft/hard fraction: $\alpha = 0.18$ + overall normalization + rapidity shape in pp

Entropy density

The other thermodynamic variables through equation of state

One example of initial condition

Integrated dynamical model

Hadronic cascade model Microscopic description of Hadron gases <u>Relativistic hydrodynamics</u> Space-time evolution of QGP+hadronic fluids

<u>Monte-Carlo Glauber model</u> Initial profile of matter

Relativistic hydrodynamics

Hydrodynamic equations

 $\partial_{\mu}T^{\mu\nu} = 0$ $T^{\mu\nu} = (e+p)u^{\mu}u^{\nu}$ $-pg^{\mu\nu}$

e: energy density *p*: pressure u^{μ} : four flow velocity

*No dissipation in this study

Equation of state

High T
→ Lattice result (hot QCD)
Low T
→ Hadron resonance gas

See also, P.Huovinen and P.Petreczky, NPA837, 26 (2010)

Hydro to cascade

One-particle distribution from a fluid element F.Cooper, G.Frye (1974)

$$E \frac{d^{3}\Delta N}{d^{3}k} = \frac{g}{(2\pi)^{3}} \frac{k \cdot \Delta \sigma}{\exp[k \cdot u/T_{sw}] \pm 1}$$
$$T_{sw} = 155 \text{ MeV}$$
$$\Sigma: T(x) = \sum_{k=1}^{N} T_{sw} = 155 \text{ MeV}$$

Thermal dist. in switching hypersurface Σ boosted by fluid velocity u^{μ}

Output from hydro as initial condition for cascade

Integrated dynamical model

Hadronic cascade model Microscopic description of Hadron gases Relativistic hydrodynamics Space-time evolution of **QGP+hadronic fluids** Monte-Carlo Glauber model Initial profile of matter

Hadronic cascade model (JAM)

Incoherent convolution of hadron-hadron scattering and resonance decays

Some remarks on strangeness sector

- $\overline{K}N$ and KN incoming channel $\overline{K}N \rightarrow \pi Y, \overline{K}N \rightarrow Y^*, KN \rightarrow K^*N$ *Inverse process through detailed balance
- Other processes \rightarrow Additive quark model

$$\sigma_{\text{tot}} = \sigma_{NN} \frac{n_1}{3} \frac{n_2}{3} \left(1 - 0.4 \frac{n_{s1}}{n_1} \right) \left(1 - 0.4 \frac{n_{s2}}{n_2} \right)$$

See also, Y.Nara *et al.*, PRC61, 024901 (2000), TH and Y.Nara, PTEP 01A203 (2012).

Emission rate

Particle emission rate with momentum \boldsymbol{k} at the last interaction point \boldsymbol{x}

$$S(x, \mathbf{k}) = E \frac{d^7 N}{d^3 k d^4 x}$$

One-particle momentum distribution

$$W(k) = E \frac{d^3 N}{d^3 k} = \int d^4 x S(x, \boldsymbol{k})$$

Transverse momentum spectra of pion and kaon

From top to bottom: Central to peripheral Multiplied by 10^x for each result

Transverse momentum spectra of proton and phi

Transverse momentum spectra of hyperon

 $\Sigma^0 \rightarrow \Lambda + \gamma$ included

Elliptic flow parameter of pion, kaon and proton

Elliptic flow parameter of phi and Lambda

Elliptic flow parameter of Xi and Omega

Short summary so far

Reasonable reproduction of transverse momentum spectra and elliptic flow parameters including strange particles by using an integrated dynamical model

Full use of emission rate

$$S(x, k) = E \frac{d^7 N}{d^3 k d^4 x}$$

Utilize information about space-time distribution

- Femtoscopy
 - HBT radii
 - Source imaging
 - Information about interaction between two particles

• • • •

Distribution of the last interaction time

Au+Au 200 GeV, min. bias, |y| < 1

Early decouple of multi-strange hadrons → Sensitive to interaction with other particles

Distribution of particle emission point

Pion case

 $S(t, x, 0.3 < k_x < 0.9 \text{GeV})$ $S(x, y, 0.3 < k_x < 0.9 \text{GeV})$ Non-trivial shape of distribution \rightarrow No longer simple Gaussian Koonin-Pratt equation $C_2(\boldsymbol{q}) = \frac{W_2(\boldsymbol{k}_1, \boldsymbol{k}_2)}{W_1(\boldsymbol{k}_1)W_2(\boldsymbol{k}_2)}$ $= 1 + \frac{\int K(\boldsymbol{q}, \boldsymbol{r})D_P(\boldsymbol{r}, \boldsymbol{q})d^3r}{\int D_P(\boldsymbol{r}, \boldsymbol{q})d^3r}$

K(Q, r): Kernel \rightarrow Information about two-particle wave functions $D_P(r)$: Un-normalized source function \rightarrow Information about relative distance ofemission pointsS.E.Koonin, Phys. Lett. 70B, 43 (1977),

S.Pratt et al., Phys. Rev. C 42, 2646 (1997),

Kernel for spin ½ particles $K(q, r) = |\Psi_{12}|^2 - 1$ $= \frac{1}{4} |\Psi_s|^2 + \frac{3}{4} |\Psi_t|^2 - 1$

 Ψ_{12} : Two-particle wave function in scattering state in Pair Co-Moving System (PCMS)

 Ψ_s : Spin-singlet (symmetric in coordinate space) Ψ_t : Spin-triplet (anti-symmetric in coordinate space)

Schrödinger eq.

Schrödinger eq. in the radial coordinate with *s*-wave approximation (E > 0)

$$\frac{d^2 u(r)}{dr^2} = \frac{2\mu}{\hbar^2} [V(r) - E] u(r), \ \mu = \frac{m_{\Lambda}}{2}$$

"Initial value problem"

u(0) = 0: Regular at r = 0 $\frac{du}{dr}(r = 0) = 1$: Later determined by normalization

Normalized solution (asymptotically parametrized by phase shift)

$$u(r) = r \times \chi(r) \rightarrow \frac{1}{k} e^{i\delta} \sin(kr + \delta)$$

Wave function in scattering state

$$V_{\Lambda\Lambda}(r) = V_1 \exp(-r^2/{\mu_1}^2) + V_2 \exp(-r^2/{\mu_2}^2)$$

"fss2" potential model $V_1 = -103.9$ [MeV] $V_2 = 658.2$ [MeV] $\mu_1 = 0.92$ [fm] $\mu_2 = 0.41$ [fm]

Y.Fujiwara *et al*. (2007)

Solving Schrödinger eq. numerically → Wave function for kernels

Wave function in kernel

s-wave approximation:

$$\Psi_{\rm s} = \sqrt{2} \left[\cos\left(\frac{\boldsymbol{q} \cdot \boldsymbol{r}}{2}\right) + \chi(\boldsymbol{r}) - j_0\left(\frac{\boldsymbol{q}\boldsymbol{r}}{2}\right) \right]$$
$$\Psi_{\rm t} = i\sqrt{2} \left[\sin\left(\frac{\boldsymbol{q} \cdot \boldsymbol{r}}{2}\right) \right] \qquad \text{s-wave scattering state}$$

plane wave

*No scattering wave in triplet state due to parity $(-1)^{l}$ in *s*-wave approximation

Source function

$D_{P}(r, q) = \int d^{4}x_{1}d^{4}x_{2}S_{1}S_{2}\delta^{3}(r - x_{1} - x_{2})$ $= \int dt \int d^{4}R S(x_{1}, k_{1})S(x_{2}, k_{2})$

 $S(x, \mathbf{k})$: One-particle emission rate

 $t = t_1 - t_2$: Relative emission time

 $r = x_1 - x_2$: Relative distance of emission points in PCMS $R = (x_1 + x_2)/2$: Four-dimensional center-of-mass coordinates

 $P = (k_1 + k_2)/2$: Average momentum (vanishing in PCMS)

Emission rate of Lambda

<u>Lambda case</u>

S(x, y)

Au+Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$ 0-80% centrality |rapidity|<0.5

- No contribution from long-lived resonances
- No longer Gaussian as is the case for pions
- A dip at origin
- Typical length \sim 5 fm

Correlation function in model calculations

Two Λ s from the same event $(x_1, k_1) (x_2, k_2)$ Variable transformation (t', r', q') (R', P')Lorentz transformation to PCMS $(\boldsymbol{r}, \boldsymbol{q})$ $C_2(\boldsymbol{q}) = 1 + \frac{\sum_{\text{event}} \sum_{\text{combination}} K(\boldsymbol{q}, \boldsymbol{r})}{\sum_{\text{event}} \sum_{\text{combination}} 1(\boldsymbol{q}, \boldsymbol{r})}$

Feed-down contribution

At least one in the Λ -pair from the following decay channels (B. R. ~100%)

 $\Sigma^0 o \Lambda \gamma, \Xi^- o \Lambda \pi^- \text{ or } \Xi^0 o \Lambda \pi^0,$ assume $K(q,r) o 0 \text{ as } |r| \gg 1/|q|$

of events: 300K min. bias \rightarrow Analysis of 0-80% centrality \rightarrow 240K events

Effect of feed-down contribution

Discussion on feed-down contribution $C_2(\boldsymbol{q}) = 1 + \frac{\sum_{\Lambda\Lambda} K(\boldsymbol{q}, \boldsymbol{r}) + \sum_{\mathrm{FD}} \overline{0}}{N_{\Lambda\Lambda}(\boldsymbol{q}) + N_{\mathrm{FD}}(\boldsymbol{q})}$ $= 1 + \lambda(\boldsymbol{q}) \frac{\sum_{\Lambda\Lambda} K(\boldsymbol{q}, \boldsymbol{r})}{N_{\Lambda\Lambda}(\boldsymbol{q})}$ Feed-down correction **Correlation of Lambda** $\lambda(\boldsymbol{q}) = \frac{N_{\Lambda\Lambda}}{N_{\Lambda\Lambda} + N_{\rm ED}}$ solely from core region

Feed-down correction factor

$$\lambda_{\rm MFO} = \left(1 - \frac{N^{\rm p}}{N_{\rm tot}}\right)^2$$

In our simulations,
$$\lambda_{\rm MFO} \sim 0.3667$$
$$\sim (0.6056)^2$$

 $\lambda(q) \approx \overline{\lambda_{\rm MFO}}$

*MFO: K.Morita, T.Furumoto, A.Ohnishi, PRC91, 024916 (2015).

Lambda-Lambda correlation function

*# of events:
~10^5 events (this study)
~10^8 events (STAR)

- Small correlation at $q > \sim 0.1 \text{ GeV}$
- Need to check other potential model
- May need to gain more statistics

STAR, PRL114, 022301 (2015).

Summary and outlook

- First attempt to calculate Lambda-Lambda correlation function in high energy nuclear collisions within an integrated dynamical model
 - Non-trivial shape of emission rate of Lambda
 - Large contribution from long-lived resonances
 - Deviation from the STAR data within a certain model potential ("fss2")
- Constraint of Lambda-Lambda potential from data (any other combination?)

Modified BGK model

Formation of hadron strings $-Y_{\text{beam}} \leftarrow \text{rapidity} \rightarrow Y_{\text{beam}}$

Number of participants From Glauber model

Parametrization of entropy density dist.

Some details of initial conditions in longitudinal direction

 $s_0(\tau_0, \eta_{\rm s}, x_{\perp}) = \frac{dS}{\tau_0 d\eta_{\rm s} d^2 x_{\perp}}$ $= \frac{C}{\tau_o} f^{pp}(\eta_s) \left| \frac{1 - \alpha}{2} \left(\frac{Y_b - \eta_s}{Y_b} \rho_A(x_\perp) + \frac{Y_b + \eta_s}{Y_b} \rho_B(x_\perp) \right) + \alpha \rho_{\text{coll}}(x_\perp) \right|$ $f^{pp}(\eta_{s}) = \exp\left[-\theta(|\eta_{s}| - \Delta\eta) \frac{(|\eta_{s}| - \Delta\eta)^{2}}{\sigma_{n}^{2}}\right]$ **RHIC energy:** $C = 15.0, \alpha = 0.18, \tau_0 = 0.6 \text{ fm}, \Delta \eta = 1.3, \sigma_\eta = 2.1$