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Introduction ~exotic hadrons~
Exotic hadrons

3

Hadrons which do not coincide with the predictions of the quark model. 
More complicated internal structure can be expected.

• tetra quark, penta quark 
•hadron molecule …

e.g.；Λ(1405)18 P-%A VE BARYONS IN THE QUARK MODEL
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FIG. 1. Comparison of the predicted and observed spectrum of negative-parity baryons. The shaded regions corre-
spond to the likely mass values of resonances; the solid bars are the predictions of the text, corresponding to the para-
meters mo= 1610MeV, += 520 MeV, x =0.6, &m =280 MeV, and 15 = 300 MeV.
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FIG. 2. Comparison of the predicted and observed spectrum of negative-parity S = 0 baryons. The predicted composi-
ti.on of a given state is displayed directly above the bar indicating its position. The experimental composition is given in
the most convenient location with respect to the shaded region which indicates its experimental position.

N. Isgur, and G. Karl, Phys. Rev. D18, 4187 (1978)

 bound stateK̄Nexited     state(      )⇤ uds

It is important to reveal the internal structure of exotics.



•weakly bound 
• stable state 
• s-wave

Previous work
Introduced to study  
deuteron by Weinberg.

Condition

Output

We can extract the information 
of the internal structure  

using experimental observables.

S. Weinberg, Phys. Rev. 137, B672 (1965)

• 　;weight of composite state 
• 　;wave function renormalization 
• 　;scattering length 
• 　;binding energy

Composite Elementary

Compositeness of bound state

(　;reduced mass of scat. state)

typical length scale 
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Part I 
~unstable states~
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Effective field theory 
To discuss the near-threshold physics, 
we use following non-relativistic EFT.

decay channel

Interaction

+

; complexscattering channel 

discrete channel 

Eigenstate

Free field        eigenstate 

point interaction

System

• scattering channel  
• decay channel 

Two channel scattering 

     can decay to        . 
Unstable quasi-bound state        exists  
near       threshold.
The interaction has a typical length scale        . 

Extension to the quasi-bound state.

We consider the compositeness of     channel ;   .
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Definition of compositeness
Bound state

•　 
•
X + Z = 1

0 < X,Z < 1

Quasi-bound state

The probabilistic interpretation  
is guaranteed for X and Z. 

The probabilistic interpretation 
 is not guaranteed!

T. Berggren, Nucl. Phys. A 109 (1968)

The expectation value of the any  
operator becomes complex number.
•  　 
•　　

Extension to the quasi-bound state.

Bound state       is  
normalized with  

To normalize unstable state, 
we introduce Gamow state       . 
Normalization condition becomes

X ⌘
Z

d3p

(2⇡)3
hQB|pihp|QBi
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original new 

Notice

sufficiently smaller than 1, 
we can extract      from     and       .

If              and           are

•     ,  　 ,　  are all complex numbers, 
       then above relation is established among them.  
• If the the contribution of decaying mode is neglected,   

      the compositeness relation is same to the one for bound state. 
•The same argument is valid for the case with                .            Re Eh > 0

EQB

Assuming         is small, we expand     with respect to      .|EQB |

Extension to the quasi-bound state.

a0 = R

�
2X

1 + X
+ O

����Rtyp

R

���
�

+ O
��� l

R

��3
��

Y. Kamiya and T. Hyodo, arXiv:1509.00146 [hep-ph]. 

Phys. Rev. C. 93.035203 



Interpretation of X
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Interpretation of the complex compositeness

(1) close to bound state case

(2-b) When imaginary part is large.

(2-a) When real part is not in [0,1]

When the cancelation is small, 
we can interpret the complex compositeness.

small cancellation in X+Z

large cancellation in X+Z

・There is no common interpretation of the complex X.
bound state case

probabilistic interpretation 
is available

�
X = 1.9 + 0.2i
Z = �0.9 � 0.2i

�
X = 0.9 + 0.8i
Z = 0.1 � 0.8i

�
X = 0.8 + 0.1i
Z = 0.2 � 0.1i



Interpretation of X
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   ; probability to find the scattering state in physical state 
   ; probability to find the other states 
   ; degree of uncertainty of the interpretation

X̃

Z̃

U

conditions : 

Our proposal
For probabilistic interpretation we define the following real quantities.

c.f. T. Berggren, Phys. Lett. B 33 (1979) 8

If     is small, we interpret 
     as the probability.X̃

U

•      
•   
•When the cancellation is 0, 

                                    . 
•    becomes large  

     when the cancellation becomes large.

X̃ + Z̃ = 1

U
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  (             scattering)  

JP = 1
2

�

e.g. 
・　excited states(     )  
・penta-quark state 
    …

� uds

molecule?K̄N

X̃ = 1

(Rtyp ⇠ 0.25 fm)

can be neglected

a0 = R

�
2X

1 + X
+ O

����Rtyp

R

���
�

+ O
��� l

R

��3
��

or 

other components?

Rtyp is estimated from  
rho meson exchange int.

  is estimated from 
difference of the threshold energy 

 Applications to hadrons



 Applications to hadrons
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(1) Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881  98 (2012)

(2) M. Mai and U. G. Meissner, Nucl. Phys. A 900, 51 (2013)

(3) Z. H. Guo and J. A. Oller, Phys. Rev. C 87, 035202 (2013)

(4)M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 30 (2015).

in              scattering  
We use        and    in the following papers.a0

           :        composite dominance

•U is small enough. ̶>     can be considered as the probability. 
•   is close to 1.

Ref.

(1) -10-i26 1.39-i0.85 1.3+i0.1 1.0 0.5
(2) -4-i8  1.81-i0.92 0.6+i0.1 0.6 0.0
(3) -13-i20 1.30-i0.85 0.9-i0.2 0.9 0.1
(4)-1    2-i10 1.21-i1.47 0.6+i0.0 0.6 0.0
(4)-2  - 3-i12 1.52-i1.85 1.0+i0.5 0.8 0.6

X UX̃
a0

(MeV) (fm)
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KK̄

⇡⌘
⇡⇡JPC = 0++

J. D. Weinstein and N. Isgur, PRD 41 (1990)

R. L. Jaffe, PRD 15 (1977) 

KK̄ molecule ?

X̃ = 1

(I = 1) (I = 0)

or 

a0(980)　　　 、          (        scattering)   KK̄f0(980) KK̄

a0 = R

�
2X

1 + X
+ O

����Rtyp

R

���
�

+ O
��� l

R

��3
��

e.g.  
・tetra quark state 
・     meson state 
      …

can be neglected

other components?

3

 Applications to hadrons



16          : small        fractiona0(980) KK̄

(1)  G. S. Adams et al. [CLEO Collaboration], Phys. Rev. D 84, 112009 (2011)

(2)  F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 681, 5 (2009) 

(3)  D. V. Bugg, Phys. Rev. D 78, 074023 (2008)  

(4)  S. Teige et al. [E852 Collaboration], Phys. Rev. D 59, 012001 (1999) 

Set

(1) 31-i70 -0.03-i0.53 0.2-i0.2 0.3 0.1

(2)   3-i25  0.17-i0.77 0.2-i0.2 0.2 0.1

(3)   9-i36  0.05‒i0.63 0.2-i0.2 0.2 0.1

(4) 15-i29 -0.13-i0.52 0.1-i0.4 0.1 0.1

X UX̃
a0

(MeV) (fm)

a0(980) in scatteringKK̄ 

 

We determine        and     from 
 Flatte parameters which  
 are obtained experimental analysis.   

a0

c. f.  :  V. Baru et al. Phys. Lett. B 586, 53 (2004)

     T. Sekihara and S. Kumano, Phys. Rev. D 92, 034010 (2015)

•U is small enough. ̶>     can be considered as the probability. 
•   is close to 0.

 Applications to hadrons
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f0(980) in scatteringKK̄ (1) T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 84, 052012 (2011)

(2)  F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 634, 148 (2006)

(3) A. Garmash et al. [Belle Collaboration], Phys. Rev. Lett. 96, 251803 (2006)

(4) M. Ablikim et al. [BES Collaboration], Phys. Lett. B 607, 243 (2005) 

(5) J. M. Link et al. [FOCUS Collaboration], Phys. Lett. B 610, 225 (2005)

(6) M. N. Achasov et al., Phys. Lett. B 485, 349 (2000)

More precise analysis is needed.

c. f.  T. Sekihara and S. Kumano, Phys. Rev. D 92, no. 3, 034010 (2015) 

 

We determine        and     from 
 Flatte parameters which  
 are obtained experimental analysis.   

a0

Ref.

(1)  19-i30 0.02-i0.95 0.3-0.3 0.4 0.2
(2)  -6 -i10 0.84-i0.85 0.3-i0.1 0.3 0.0
(3)  -8 -i28 0.64-i0.83 0.4-i0.2 0.4 0.1
(4)  10-i18 0.51-i1.58 0.7-i0.3 0.6 0.1
(5) -10-i29 0.49-i0.67 0.3-i0.1 0.3 0.0
(6) 10-i7 0.52-i2.41 0.9-i0.2 0.9 0.1

X UX̃
a0

(MeV) (fm)

•U is small enough. ̶>     can be considered as the probability. 
• Values of     are not consistent.

 Applications to hadrons



Part II 
~CDD pole contribution~
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CDD pole and weak-binding relation
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In the derivation of the relation 
we assume that effective range expansion (ERE) 
work well at the pole of eigenstate. bound

convergence region of ERE(s-wave)

When CDD pole lies near the threshold and ERE fails to describe the eigenstate, 
weak-binding relation is not available.

If CDD pole lies near the threshold, we cannot use  
the previous weak-binding relation to study internal structure. 

CDD
S. Weinberg, Phys. Rev. 137, B672 (1965)

CDD(Castillejo Dalitz Dyson) pole(    ) and internal structure

Condition of the weak-binding relation

CDD pole : 

・represents the contribution from outside of the model

T. Hyodo, Phys. Rev. Lett. 111 (2013) 132002.
Z.-H. Guo and J. A. Oller, Phys. Rev. D93, 054014 (2016), 1601.00862.

V. Baru et al, Eur. Phys. J. A44, 93 (2010), 1001.0369.

L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 453 (1956). 

G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961). 
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Compositeness

•The leading term of the            is cutoff independent.
T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308. 

：typical length scale of int.

Y. Kamiya, T. Hyodo in preparation. 

: bound state

T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308. 

Derivation without convergence of ERE
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Compositeness

•    is cutoff independent. T. Hyodo, NSTAR proceedings, arXiv:1511.00870. 

With the slight change of the cutoff                    keeping         invariant, 
represent of     does not change.

approximate    with ERE

 : range scale characterizing ERE

Y. Kamiya, T. Hyodo in preparation. 
T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308. 

: bound state

Derivation without convergence of ERE
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• Two independent expansions are used to derive the relation.
(1)             : ratio of typical length scale of int.         and    .  
(2)             : ratio of length scale characterizing ERE        and    .

•When the both expansions converge well, 
      compositeness can be estimated from experimental observables (re, R).

• If        satisfies                   , above relation reduces to the Weinberg’s relation.  

Compositeness

Derivation independent of effectiveness of ERE
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• Two independent expansions are used to derive the relation.
(1)             : ratio of typical length scale of int.         and    .  
(2)             : ratio of length scale characterizing ERE        and    .

•When the both expansions converge well, 
      compositeness can be estimated from experimental observables (re, R).

• If        satisfies                   , above relation reduces to the Weinberg’s relation.  

If ERE does not describe the bound state                    , 
the approximation of the coupling constant should be improved.

Compositeness

Derivation independent of effectiveness of ERE
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Extended relation with the CDD pole contribution
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bound

CDD

Pade approximation

Even when the ERE does not describe the bound state, 
we can estimate the compositeness using experimental observables.

Y. Kamiya, T. Hyodo in preparation. 

To take account of the contribution of CDD pole 
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We compare the effectiveness of the estimation  
using the previous and extended weak-binding relation.

CDD
bound

The estimation of the compositeness is improved, 
when the CDD pole lies near the threshold. 

previous relation

extended relation

exact compositeness in this model

Extended relation with the CDD pole contribution

Verification with model
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We compare the effectiveness of the estimation  
using the previous and extended weak-binding relation.

The estimation of the compositeness is improved, 
when the CDD pole lies near the threshold. 

previous relation

extended relation

exact compositeness in this model

Extended relation with the CDD pole contribution

Verification with model

CDD
bound



Conclusions ~Part I~
Conclusions 
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• We extend the weak-binding relation to quasi-bound states. 

• We propose an interpretation of complex X. 

• We apply the method to exotic hadrons and discuss the internal structures.

If the absolute value of the eigenenergy is small enough,  
the compositeness is model-independently determined only from observables.

            :      composite dominance 
            : not         dominance 
⇤(1405)

a0(980)

K̄N

KK̄

If the uncertainty    is small, we interpret    as the probability.X̃U

Y. Kamiya and T. Hyodo, arXiv:1509.00146 [hep-ph]. 

Phys. Rev. C. 93.035203 



Conclusions ~Part II~
Conclusions 
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Y. Kamiya, T. Hyodo in preparation. 

• Convergence of ERE is assumed in the previous derivation.

• We derive the weak-binding relation without assuming the convergence of ERE.

• With the Pade approximation, we take into account of the contribution 

       of the near-threshold CDD pole and derive the extended weak-binding relation.

• With model calculation, it is confirmed that the compositeness is accurately  

       estimated even if the CDD pole lies near the threshold.
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Interpretation of X
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X is a complex number. 
(1) close to bound state case

(2-b) When imaginary part is large.

(2-a) When real part is not in [0,1]

It is difficult to interpret X 

as a probability.

The probabilistic interpretation  
is seemed to be possible.

Is there any good prescription to interpret the complex value? 

small cancellation in X+Z

large cancellation in X+Z
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Examples of 
(1)

(2-b)

(2-a)

Interpretation of X



Flatte parametrization
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T =
1

M2 � s� i (g1⇢↵⇡ + g2⇢KK̄)

Find pole position of the T matrices 

g1 and g2 were determined fitting the scattering amplitude.

Eh

a0

Normalize  Kbar-K amplitude f(s) so as to f(s) satisfies   

To get     and     from Flatte parametersEh a0

f(s)�1 ! �a0 � ik +O(k2)

for a0(980) :    denote 
      f0(980) :    denote

⌘
⇡

↵
↵

a0 = �f(0)

(k is a momentum of K or Kbar )

⇢↵� =2p↵�/
p
s



Power counting(1)
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Neglecting collection terms, 
the compositeness relation is rewritten  
by scattering length     and effective range    .a0 re

X(a0, re) =

✓
1� 2re

a0

◆�1/2 X ⇠ 0 �! |re/a0| ⇠ 1
X ⇠ 0.5 �! |re/a0| ⇠ 1.5

X ⇠ 1 �! |re/a0| ⇠ 0

Ref.

(1) -10-i26 1.39-i0.85 1.3+i0.1 1.0 0.2
(2) -4-i8  1.81-i0.92 0.6+i0.1 0.6 0.7
(3) -13-i20 13.0-i0.85 0.9-i0.2 0.9 0.2
(4)-1    2-i10 1.21-i1.47 0.6+i0.0 0.6 0.7
(4)-2  - 3-i12 1.52-i1.85 1.0+i0.5 0.8 0.4

X X̃
a0

(MeV) (fm)

����
re
a0

����

⇤(1405)　　　



Power counting(2)
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a0(980)

X(a0, re) =

✓
1� 2re

a0

◆�1/2 X ⇠ 0 �! |re/a0| ⇠ 1
X ⇠ 0.5 �! |re/a0| ⇠ 1.5

X ⇠ 1 �! |re/a0| ⇠ 0

Set

(1) 31-i70 -0.03-i0.53 0.2-i0.2 0.3 4.8
(2)   3-i25  0.17-i0.77 0.2-i0.2 0.2 6.5
(3)   9-i36  0.05‒i0.63 0.2-i0.2 0.2 7.2
(4) 14- i 5 -0.13-i2.19 0.8-i0.4 0.7 0.5
(5) 15-i29 -0.13-i0.52 0.1-i0.4 0.1 13

X X̃
a0

(MeV) (fm)

����
re
a0

����



Power counting(3)
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f0(980)

X(a0, re) =

✓
1� 2re

a0

◆�1/2 X ⇠ 0 �! |re/a0| ⇠ 1
X ⇠ 0.5 �! |re/a0| ⇠ 1.5

X ⇠ 1 �! |re/a0| ⇠ 0

Set

(1)  19-i30 0.02-i0.95 0.3-0.3 0.4 2.6
(2)  -6 -i10 0.84-i0.85 0.3-i0.1 0.3 5.4
(3)  -8 -i28 0.64-i0.83 0.4-i0.2 0.4 2.1
(4)  10-i18 0.51-i1.58 0.7-i0.3 0.6 0.7
(5) -10-i29 0.49-i0.67 0.3-i0.1 0.3 4.0
(6) 10-i7 0.52-i2.41 0.9-i0.2 0.9 0.2

X X̃
a0

(MeV) (fm)

����
re
a0

����


