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Introduction ~exotic hadrons~

s Exotic hadrons

Hadrons which do not coincide with the predictions of the quark model.
complicated inn structure can be expected.

 tetra quark, penta quark
* hadron molecule -

~___ ltis important to reveal the internal structure of exotics.
e.g.; N(1405)
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1. Comnarison of the nredicted and observed snectrum of negative-naritv barvons. The shaded reci

N. Isgur, and G. Karl, Phys. Rev. D18, 4187 (1978)



Compositeness of bound state

sPrevious work

Introduced to study Composite Elementary
deuteron by Weinberg. ‘
S. Weinberg, Phys. Rev. 137, B672 (1965) '
s Condition
» weakly bound X=1 X =0
» stable state 7 =0 7 =1
* S-wave
s Output | 2o — R{ 2X O(Rtyp/R)}
* X ;weight of composite state (0 < X < 1) 1+ X X
* Z ;wave function renormalization (0 < Z < 1) typical Ier\wgth scale

* Qg ;scattering length

* B ;binding energy
pe 1
- /2uB
(#;reduced mass of scat. state)

' We can extract the information |
i of the internal structure |
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Extension to the quasi-bound state.

s System

Two channel scattering
 scattering channel |p>
* decay channel |p/>

/P) can decay to |P').

Unstable quasi-bound state |QB) exists

near |p) threshold.
The interaction has a typical length scale typ .

s Effective field theory

To discuss the near-threshold physics,
we use following non-relativistic EFT.

Free field Hs. €igenstate

|p> scattering channel
——————————

|Bp) discrete channel

Interaction

p") ") p") B,
Hing = +

point interaction

Eigenstate

H = Hfree + Hint

H|QB) = Eqp|QB)
Egp = —B —il'/2 ; complex

We consider the compositeness of |p)channel ; X.



Extension to the quasi-bound state.

s Definition of compositeness

Bound state Quasi-bound state

To normalize unstable state,

we introduce Gamow state |QB).

Bound state |B) is Normalization condition becomes

normalized with (B|B) =1 (QB|QB) = (QB*|QB) = 1.
T. Berggren, Nucl. Phys. A 109 (1968)

e X +7=1 The expectation value of the any
e 0< X, Z <1 . operator becomes complex number.
A x= / 5y (BIP)PIB) X +Z=1
- [ sl @B
\/

The probabilistic interpretation The probabilistic interpretation
is guaranteed for X and Z. is not guaranteed! :




Extension to the quasi-bound state.

Y. Kamiya and T. Hyodo, arXiv:1509.00146 [hep-ph].

Phys. Rev. C. 93.035203
s Assuming |Egg|is small, we expand aqy with respect to 1/R.

aO:RLiXX | O( )+O(\%\3)} R¢1—21LEQB
_

‘original new N

f |Riyo/R| and |I/R|” are ,
* sufficiently smaller than 1, y LB
e ———

Rtyp

R

P

we can extract X from ap andEgp.

s Notice
* a9 ,Egp, X are all complex numbers,

then above relation is established among them.
* |f the the contribution of decaying mode is neglected,

the compositeness relation is same to the one for bound state.
 The same argument is valid for the case with Re Ej, > 0. 2



Interpretation of X

s Interpretation of the complex compositeness

* There is no common interpretation of the complex X.

bound state case
(1) close to bound state case Y — 08
Im - .
{X:O.8+O.1i { Z =0.2
2=02-0.L X Z probabilistic interpretation
P Re . .
small cancellation in X+Z| ° 1 is available

(2-a) When real part is not in [0,1]

X =19+0.2i
Z = —=0.9 — 0.2 X 7

Re

1

large cancellation in X+Z

(2-b) When imaginary part is large.

X =0.9+0.8i
Z =0.1-0.8i -

0

1 ..
When the cancelation is small,

10
// we can interpret the complex compositeness.



Interpretation of X

Our proposal

c.f. T. Berggren, Phys. Lett. B 33 (1979) 8

For probabilistic interpretation we define the following real quantities.
X ; probability to find the scattering state in physical state

7 ; probability to find the other states
U ; degree of uncertainty of the interpretation

conditions :

X+27Z=1

0< X, Z<1

* When the cancellation is O,
X=X,Z=2ZU=0 .

* U becomes large
when the cancellation becomes large.

If U is small, we interpret

~

— X as the probability.

o _1-|Z]+ X
2

5 _1-|X|+12]
2

U=Z|+ |X|-1
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Applications to hadrons

_ e R
s A(1405) (I =0 KN scattering) R .
T K
P @ KN
2
KN molecule? other components?
X =1 or X =0 - A excited states(uds)

- penta-quark state

Rtyp is estimated from » Ruy, _ . _21E
rho meson exchange int. ‘ R |~ 017 e
(Rigp ~ 0.25 fm) = 5
[ is estimated from , |i s -
difference of the threshold energy R~
w=r| g o () ro (4] o x=20 o X
\ 13

can be neglected



Applications to hadrons

s A(1405)inI =0 KN scattering , V103 Mev
We use Egp andaoin the following papers. =5 Ten
(1) Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881 98 (2012) ®

(2) M. Mai and U. G. Meissner, Nucl. Phys. A 900, 51 (2013)
(3) Z. H. Guo and J. A. Oller, Phys. Rev. C 87,035202 (2013)
(4)M. Mai and U.-G. MeiBner, Eur. Phys. J. A 51, 30 (2015).

aQ
MeV (fm)

-4-18
-13-i20

2-110
- 3-i12

1.39-10.85
1.81-10.92
1.30-10.85
1.21-11.47
1.52-11.85

1.3+i0.1

0.6+i0.1 0.6
0.9-10.2 0.9
0.6+i0.0 0.6
1.0+10.5 0.8

« U is small enough. —> X can be considered as the probability.

e Xis close to 1.

0.0
0.1
0.0
0.6

A(1405)

. KN composite dominance | 14




Applications to hadrons

s ap(980) | fo(980) ( K K scattering) R

I=1) (=0 S

™ x
JPC _ gt T
KK

KK molecule 7 other components?

J. D. Weinstein and N. Isgur, PRD 41 (1990) e.g.

‘ X =1 or X=0 + tetra quarléfg?f;ce,epm 15 (1977)

-+ ¢4 meson state @

Ge)vo(al)] v x=0 v XU
\ 15

can be neglected




Applications to hadrons

c.f. : V.Baruet al. Phys. Lett. B 586, 53 (2004)

s a’O (980) In KK Scatterlng T. Sekihara and S. Kumano, Phys. Rev. D 92, 034010 (2015)
We determmeEQB and ao from (1) G.S.Adams et al. [CLEO Collaboration], Phys. Rev. D 84, 112009 (2011)
Flatte parameters which (2) F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 681, 5 (2009)

. . . (3) D. V. Bugg, Phys. Rev. D 78,074023 (2008)
are obtained experimental analysis.
(4) S.Teige et al. [E852 Collaboration], Phys. Rev. D 59,012001 (1999)

ap ~

(fn) X X J

(1) 31-i70 -0.03-i0.53 0.2-i0.2 0.3 0.1
(2) 3-i25 0.17-i0.77 0.2-i0.2 0.2 0.1
©) 9-i36 0.05-i0.63 0.2-i0.2 0.2 0.1
(4) 15-i29 -0.13-i0.52 0.1-i0.4 0.1 0.1

« U is small enough. —> X can be considered as the probability.
X is close to O.

T ap(980) : small K K fraction 16




Applications to hadrons

. c.f. T. Sekihara and S. Kumano, Phys. Rev. D 92, no. 3, 034010 (2015)
> fO (980) |n KK SCatte I’I ng (1) T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 84, 052012 (2011)

. (2) F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 634, 148 (2006)
We determine Egp and ag from
(3) A. Garmash et al. [Belle Collaboration], Phys. Rev. Lett. 96, 251803 (2006)

Flatte pa ra mete 'S Wh ICh (4) M. Ablikim et al. [BES Collaboration], Phys. Lett. B 607, 243 (2005)

are obtained experimenta| ana|y3is (5)J. M. Link et al. [FOCUS Collaboration], Phys. Lett. B 610, 225 (2005)
(6) M. N. Achasov et al., Phys. Lett. B 485, 349 (2000)

0.02-10.95
-6 -i110 0.84-10.85 0.3—10.1 0.3 0.0
-3 -128 0.64-10.83 0.4-10.2 0.4 0.1
10-i18 0.51-i1.58 0.7-10.3 0.6 0.1
-10-129 0.49-10.67 0.3-10.1 0.3 0.0
10-i7 0.52-i2.41 0.9-10.2 0.9 0.1

« U is small enough. —> X can be considered as the probability.
» Values of X are not consistent.

More precise analysis is needed. | 17
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CDD pole and weak-binding relation

s CDD(Castillejo Dalitz Dyson) pole( E.) and internal structure

CDD pole : f ( EC) — ()| L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 453 (1956).
G.F. Chew and S. C. Frautschi, Phys. Rev. 124,264 (1961).

- represents the contribution from outside of the model

V. Baru et al, Eur. Phys. J. A44, 93 (2010), 1001.0369.
T. Hyodo, Phys. Rev. Lett. 111 (2013) 132002.

Z.-H. Guo and J. A. Oller, Phys. Rev. D93, 054014 (2016), 1601.00862.

s Condition of the weak-binding relation

In the derivation of the relation 12

we assume that effective range expansion (ERE) IV

work well at the pole of eigenstate. ¢ g
bound

| : X

A

_ Te 2 .
f(E) = " + ob —w (s-wave) convergence region of ERE
When CDD pole lies near the threshold and ERE fails to describe the eigenstate, A ‘ b
weak-binding relation is not available. X N
S. Weinberg, Phys. Rev. 137, B672 (1965) CobD

If CDD pole lies near the threshold, we cannot use
the previous weak-binding relation to study internal structure. | 1°
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Derivation without convergence of ERE

s Compositeness

d3
T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308. X / p ‘ B
Y. Kamiya, T. Hyodo in preparation.

X =-gG(Ep)

H|B) EB\B> (Ep <0)

|B) : bound state

» The leading term of the G'(ER)is cutoff independent.

v
G (EB) 47TEBR {1

R = 1/\/—2/LEB

o

T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308.

Riyp Ry : typical length scale of int. (~ 1/A)
R I 1

) / p=dp .
272 Jo E—p?/(2p) + 0%

G(E) =

21



Derivation without convergence of ERE

s Compositeness v - d3 B)
T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308. p ‘ ‘
Y. Kamiya, T. Hyodo in preparation.

X :;g_fG’(EB)

H|B) EB\B> (Ep <0)

|B) : bound state

¢ g2 iS CUtOﬂ: independent. T. Hyodo, NSTAR proceedings, arXiv:1511.00870.

With the ingthChange of the cutoff A — A 4 JA keeping T(E) invariant,
represent of § does not change.

approximate g°with ERE

———

, a1l
— — 27
A COtC ) 7= Jim B~ Eo)f(B)
1 re o 3 4 ’
ag TP O(Beqp”) R.s : range scale characterizing ERE
g2 = 2T 1

> R—re + RO((Regt/ R)?)

22



Derivation independent of effectiveness of ERE

s Compositeness

X =—g°G'(Ep)

* Two independent expansions are used to derive the relation.

(1) Ryp/ R : ratio of typical length scale of int. Ry, and R.
(2) Regr/ R : ratio of length scale characterizing ERE Reg and R .

 When the both expansions converge well,
compositeness can be estimated from experimental observables (re, R).

* If Rog satisfies Rest S Riyp , above relation reduces to the Weinberg’s relation.

23



Derivation independent of effectiveness of ERE

s Compositeness

X =—g°G'(Ep)

* Two independent expansions are used to derive the relation.
(1) Ryp/ R : ratio of typical length scale of int. Ry, and R.
(2) Regr/ R : ratio of length scale characterizing ERE Reg and R .

 When the both expansions converge well,
compositeness can be estimated from experimental observables (re, R).

* If Rog satisfies Rest S Riyp , above relation reduces to the Weinberg’s relation.

If ERE does not describe the bound state ((Reﬂ;/R)3 2 1),
' the approximation of the coupling constant should be improved. 24
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Extended relation with the CDD pole contribution

s To take account of the contribution of CDD pole E
COD T

Pal e g
X = —( G (EB) bound

f(E) = [pcotd —ip]

K. bo + bip” 5 6 L
oz T OUraer”)  Pade approximation

Y. Kamiya, T. Hyodo in preparation.

o x =R =0((%)5)}_1 (1+0 (%))

Even when the ERE does not describe the bound state,
we can estimate the compositeness using experimental observables.

26



Extended relation with the CDD pole contribution

s Verification with model
We compare the effectiveness of the estimation

using the previous and extended weak-binding relation.
exact compositeness in this model

5

Vel xR,ao/cha; o
Xexact — _g G (EB) 45 ~xPadc/xcxac: -
previous relation sl
ago
XR,CL() p— 35 F
2R — ao
3 —
extended relation
1 25 |
4R(CLO — R)2 .
Xpade = |1 — > 2 | L -
agTe :
15 F .
A ‘ E - :
E E 1 ‘ ’ ' -
C B -10 -8 6 -4 -2 E o
. B
>< ~ " +
% % bound
CDD

The estimation of the compositeness is improved,
~— when the CDD pole lies near the threshold.

27



Extended relation with the CDD pole contribution

s Verification with model
We compare the effectiveness of the estimation

using the previous and extended weak-binding relation.
exact compositeness in this model

5

L ) / XRa /chac:t T
Xexact — _g G (EB) 45 ~xPad2/xcxacl -
previous relation sl
ag
XR,CL() p— 35
2R — ao

3 -

extended relation

25

4R(ag — R)2] "
XPadé=[1— (02 )] 2|
agre
15
v LB - —
EC EB 1.10 -18 -16 L : ——
e > Ec [MeV]
4 # bound
CDD

The estimation of the compositeness is improved,
~— when the CDD pole lies near the threshold.

28



Conclusions ~Part I~

M Y. Kami d T. Hyodo, arXiv:1509.00146 [hep-ph].
s Conclusions amiya and T. Hyodo, arXiv [hep-ph)

Phys. Rev. C. 93.035203
* We extend the weak-binding relation to quasi-bound states.
[ 2X

ap = R« i+x O (|Ryp/R|) + O (Il/RI3)}

N

If the absolute value of the eigenenergy is small enough,
the compositeness is model-independently determined only from observables.

e

 We propose an interpretation of complex X.
1—|Z] + | X]|
2 Y

X =

U=|X|+1|Z]—-1

If the uncertainty U is small, we interpret X as the probability.

—_—

 We apply the method to exotic hadrons and discuss the internal structures.

A(1405) : K N composite dominance

— a0(980) : not KK dominance
29



Conclusions ~Part I~

s Conclusions

Y. Kamiya, T. Hyodo in preparation.

Convergence of ERE is assumed in the previous derivation.

* We derive the weak-binding relation without assuming the convergence of ERE.

« With the Pade approximation, we take into account of the contribution

of the near-threshold CDD pole and derive the extended weak-binding relation.

xR o (e)] (10 (%))

agre

With model calculation, it is confirmed that the compositeness is accurately

estimated even if the CDD pole lies near the threshold.
30
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Interpretation of X

s X Is a complex number.

(1) close to bound state case
{ X =08 —0.14 The probabilistic interpretation

>

Z =0.2+0.1¢ Is seemed to be possible.
small cancellation in X+Z

(2-a) When real part is not in [0, 1]
{ X =19-0.27

Z=209+020 ———0!

C er . "
(2-b) When imaginary part is large. 'tis difficult to interpret

{ X =0.9—-0.8 / as a probability.

Z=01%1038 large cancellation in X+Z

32
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Interpretation of X

= Examples of X, Z

(1) X =0.8

X =0.8—0.13 . Z =02

Z =0.2+0.1¢ U =0.0
(2-a) )
(2-b) >

‘o | X = 0.7

— U. vad&_ P Z:OS

{Z:Olt&& U = 1.0

33



Flatte parametrization

s To get Erand @o from Flatte parameters

T — ! for a0(980) : @ denote 7
M? — s — i (g1par + 920K i) fO(980) : & denote =

Pap :onzﬁ/\/g

gl and g2 were determined fitting the scattering amplitude.

Ej,

Find pole position of the T matrices

ao

Normalize Kbar-K amplitude f(s) so as to f(s) satisfies

f(s)™t = —ag — ik + O(k?) (k is a momentum of K or Kbar )

ap = —f(0) 34



Power counting(1)

2X
Neglecting collection terms, ao = R{H—X + O (|Reyp/R[) + O (ll/R| )}
the compositeness relation is rewritten
by scattering length ao and effective range r-.

X ~0 —|re/ag| ~ o0

—1/2
X(ag,Te) = (1— > X ~ 05— |re/ag| ~ 1.5
ao —/

X ~1 —|re/ag| ~ 0

EQB ao Te
MeV fm CLO

-10-i26 1.39-i0.85 | 1.3+i0.1 1.0
-4-i8 1.81-10.92 | 0.6+i0.1 0.6 0.7

-13-120 13.0-i0.85| 0.9-i0.2 0.9 0.2
2-110  1.21-i1.47 | 0.6+i0.0 0.6 0.7

-3-i12  1.52-i1.85| 1.0+i0.5 0.8 0.4 35




Power counting(2)

X ~0 —|re/ag| ~ o0

o —1/2
X (ag,Te) = (1 — ) _/ X ~05—|r./ag| ~ 1.5

X ~1 —|re/ag| ~0

ao(980)

-0.03-10.53
3-125 0.17-10.77] 0.2-10.2 0.2 0.5
9-i36 0.05-10.63| 0.2-i0.2 0.2 7.2

14-15 -0.13-i2.19] 0.8-i0.4 0.7 0.5

15-i29  -0.13-10.52| 0.1-i0.4 0.1 13

36



Power counting(3)

X ~0 —|re/ag| ~ o0

—1/2
27,
X (ag,Te) = (1 — ) _/ X ~05—|r./ag| ~ 1.5

X ~1 —|re/ag| ~0

f0(980)

0.02-i0.95 | 0.3-0.3 . .
-6-i10  0.84-i0.85 | 0.3-i0.1 0.3 54
-8 -i28  0.64-i0.83 | 0.4-i0.2 0.4 2.1
10-i18  0.51-11.58 | 0.7-10.3 0.6 0.7

-10-i29  0.49-i0.67 | 0.3-i0.1 0.3 4.0
10-i7 0.52-i2.41 | 0.9-i0.2 0.9 0.2

37



