Understanding the nature of heavy pentaquarks and searching for them in pion-induced reactions

Xiao-Hai Liu

Tokyo Institute of Technology

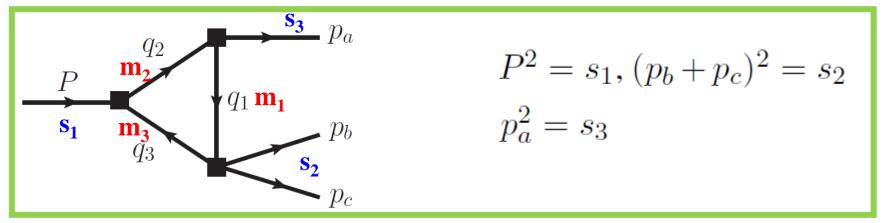
For the workshop of ExHIC, YITP, Kyoto, 2016.03.25

Outline

- **Early study**
- **>** Triangle singularity (TS) mechanism
- **>TS mechanism and the heavy pentaquark "Pc"**
- Searching for the heavy pentaquark in $\pi p \rightarrow \pi J/\psi p$
- **≻**Summary

Early study in 1960s

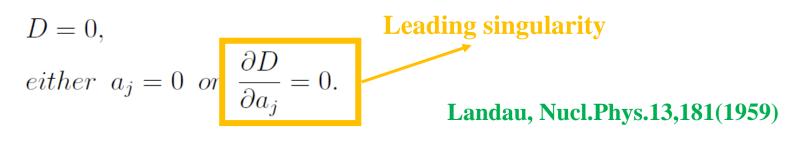
Connections between kinematic singularities of the S-matrix elements and resonance-like peaks: e.g. Peierls mechanism R.F.Peierls, PRL6,641(1961); R.C.Hwa, PhysRev130,2580(1963); C.Goebel,PRL13,143(1964); P.Landshoff&S.Treiman Phys.Rev.127,649(1962);

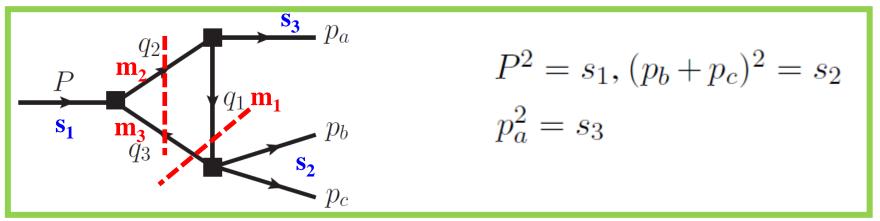

≻Some disadvantages:

- ✓ Few experiments to search for the effects;
- ✓ Low statistics;

.

- For the elastic scattering process, singularities of the triangle diagram will be weakened by the corresponding tree diagram without rescattering, according to the so called Schmid theorem
 - C.Schmid, Phys. Rev. 154, 1363(1967);


I. J. R. Aitchison & C. Kacser, Phys.Rev.173,1700(1968); A.V. Anisovich, PLB345,321(1995)

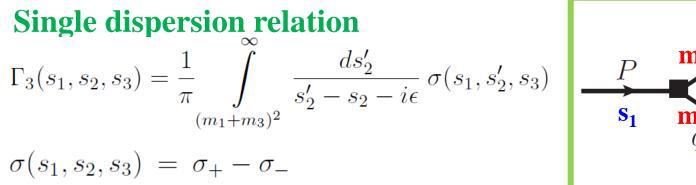


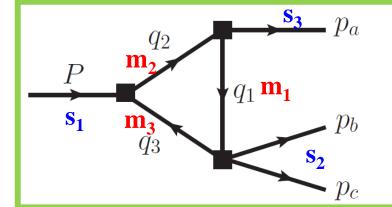
$$\Gamma_3(s_1, s_2, s_3) = \frac{-1}{16\pi^2} \int_0^1 \int_0^1 \int_0^1 da_1 \, da_2 \, da_3 \, \frac{\delta(1 - a_1 - a_2 - a_3)}{D - i\epsilon}$$
$$D = \sum_{i,j=1}^3 a_i a_j Y_{ij}, \quad Y_{ij} = \frac{1}{2} \left[m_i^2 + m_j^2 - (q_i - q_j)^2 \right]$$

✓ Singularity in the complex space

Necessary conditions (Landau Equation)

✓ Singularity in the complex space The position of the singularity is obtained by solving $det[Y_{ij}] = 0$


$$s_{2}^{\pm} = (m_{1} + m_{3})^{2} + \frac{1}{2m_{2}^{2}}[(m_{1}^{2} + m_{2}^{2} - s_{3})(s_{1} - m_{2}^{2} - m_{3}^{2}) - 4m_{2}^{2}m_{1}m_{3}$$


$$\pm \lambda^{1/2}(s_{1}, m_{2}^{2}, m_{3}^{2})\lambda^{1/2}(s_{3}, m_{1}^{2}, m_{2}^{2})], \quad \lambda(x, y, z) \equiv (x - y - z)^{2} - 4yz$$
Anomalous Threshold
$$s_{1}^{\pm} = (m_{2} + m_{3})^{2} + \frac{1}{2m_{1}^{2}}[(m_{1}^{2} + m_{2}^{2} - s_{3})(s_{2} - m_{1}^{2} - m_{3}^{2}) - 4m_{1}^{2}m_{2}m_{3}$$

$$\pm \lambda^{1/2}(s_{2}, m_{1}^{2}, m_{3}^{2})\lambda^{1/2}(s_{3}, m_{1}^{2}, m_{2}^{2})].$$

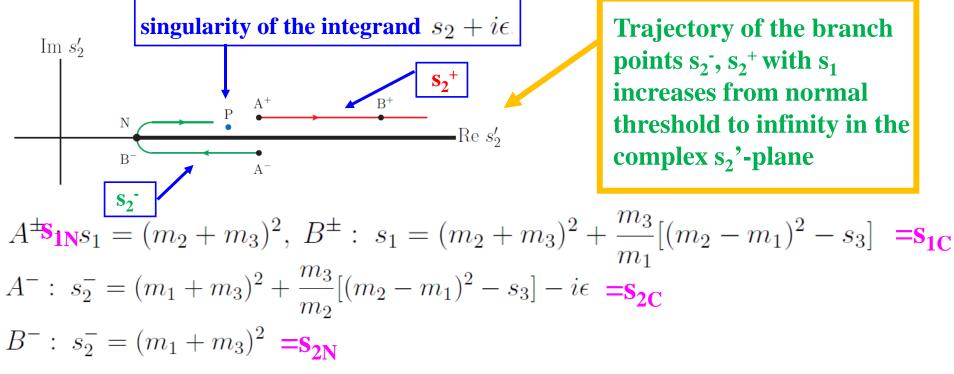
$$s_{1}^{\pm} = \lambda^{1/2}(s_{2}, m_{1}^{2}, m_{3}^{2})\lambda^{1/2}(s_{3}, m_{1}^{2}, m_{2}^{2})].$$

Normal Threshold

$$\sigma_{\pm}(s_1, s_2, s_3) = \frac{-1}{16\pi\lambda^{1/2}(s_1, s_2, s_3)} \log[-s_2(s_1 + s_3 - s_2 + m_1^2 + m_3^2 - 2m_2^2) - (s_1 - s_3)(m_1^2 - m_3^2) \pm \lambda^{1/2}(s_1, s_2, s_3)\lambda^{1/2}(s_2, m_1^2, m_3^2)].$$

Work in the kinematical region

$$s_1 \leq (m_2 + m_3)^2, \, s_3 \leq (m_2 - m_1)^2 \qquad 0 < s_2 < (m_1 + m_3)^2$$


By analytic continuation, it can be extended into the over threshold region Fronsdal&Norton,J.Math.Phys.5,100(1964)

 $s_1 \ge (m_2 + m_3)^2, \ (m_1 + m_3)^2 \le s_2 \le (\sqrt{s_1} - \sqrt{s_3})^2, \ 0 \le \sqrt{s_3} \le m_2 - m_1$

Brach points of the log function s_2^{\pm}

Locations of s_2^{\pm} in the s₂'-plane can be determined by

$$s_2^{\pm}(s_1 + i\epsilon) = s_2(s_1) + i\epsilon \frac{\partial s_2^{\pm}}{\partial s_1}$$

s₂⁻ and P will pinch the integral contour This pinch singularity is the triangle singularity (TS)

Locations of s_2^{\pm} in the s₂'-plane can be determined by

$$s_2^{\pm}(s_1 + i\epsilon) = s_2(s_1) + i\epsilon \frac{\partial s_2^{\pm}}{\partial s_1}$$

singularity of the integrand $s_2 + i\epsilon$ Trajectory of the branch "The kinematic conditions for the existence of singularities on the physical boundary are equivalent to the condition that the relevant Feynman diagram be interpretable as a picture of an energy and momentum-conserving process occurring in spacetime, with all internal particles real, on the mass shell and moving forward in time."

Coleman&Norton, Nuovo Cimento 38,5018 (1965)

Fronsdal&Norton, J.Math. Phys. 5, 100(1964)

TS Kinematic Region

Normal threshold and critical point

$$s_{1N} = (m_{2} + m_{3})^{2}, \ s_{1C} = (m_{2} + m_{3})^{2} + \frac{m_{3}}{m_{1}}[(m_{2} - m_{1})^{2} - s_{3}],$$

$$s_{2N} = (m_{1} + m_{3})^{2}, \ s_{2C} = (m_{1} + m_{3})^{2} + \frac{m_{3}}{m_{2}}[(m_{2} - m_{1})^{2} - s_{3}],$$

$$\Delta_{s_{1}} = \sqrt{s_{1}^{-}} - \sqrt{s_{1N}}, \quad \textbf{Discrepancy between anomalous and}$$

$$\Delta_{s_{2}} = \sqrt{s_{2}^{-}} - \sqrt{s_{2N}}. \quad \textbf{normal threshold}$$
When $s_{2} = s_{2N}$

$$\Delta_{s_{1}}^{max} = \sqrt{s_{1C}} - \sqrt{s_{1N}} \approx \frac{m_{3}}{2m_{1}(m_{2} + m_{3})}[(m_{2} - m_{1})^{2} - s_{3}], \quad \textbf{Largest discrepancy}$$

$$\Delta_{s_{2}}^{max} = \sqrt{s_{2C}} - \sqrt{s_{2N}} \approx \frac{m_{3}}{2m_{2}(m_{1} + m_{3})}[(m_{2} - m_{1})^{2} - s_{3}]. \quad \textbf{Largest discrepancy}$$
When $s_{1} = s_{1N}$

$$(m_{2} - m_{1})^{2} - s_{3}]. \quad \textbf{Largest discrepancy}$$
How to amplify the discrepancy between normal and anomalous threshold?
$$(m_{2} - m_{1})^{2} - s_{3}]. \quad \textbf{Largest discrepancy}$$

- p_c

arXiv:1507.01674

TS Kinematic Region

Normal threshold and critical point

$$s_{1N} = (m_2 + m_3)^2, \ s_{1C} = (m_2 + m_3)^2 + \frac{m_3}{m_1} [(m_2 - m_1)^2 - s_3],$$

$$s_{2N} = (m_1 + m_3)^2, \ s_{2C} = (m_1 + m_3)^2 + \frac{m_3}{m_2} [(m_2 - m_1)^2 - s_3],$$

$$\Delta_{s_1} = \sqrt{s_1^-} - \sqrt{s_{1N}},$$

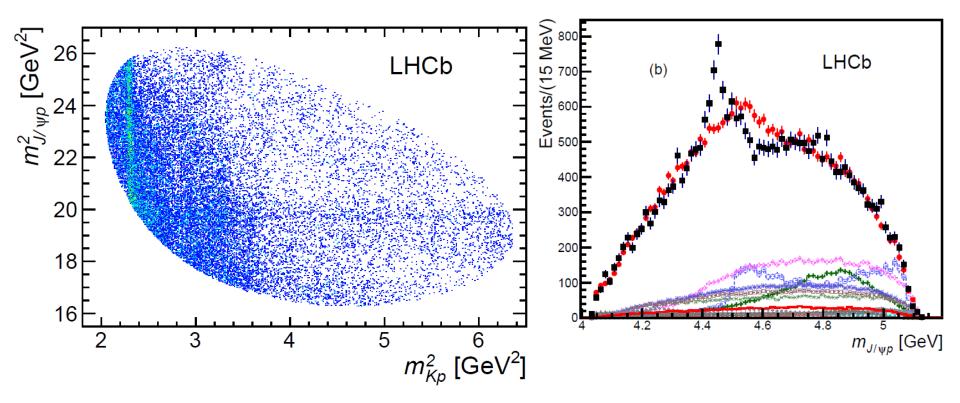
$$\Delta_{s_2} = \sqrt{s_2^-} - \sqrt{s_{2N}}.$$

Discrepancy between anomalous and normal threshold

$$\Delta_{s_1}^{\max} = \sqrt{s_{1C}} - \sqrt{s_{1N}} \approx \frac{m_3}{2m_1(m_2 + m_3)} [(m_2 - m_1)^2 - s_3],$$

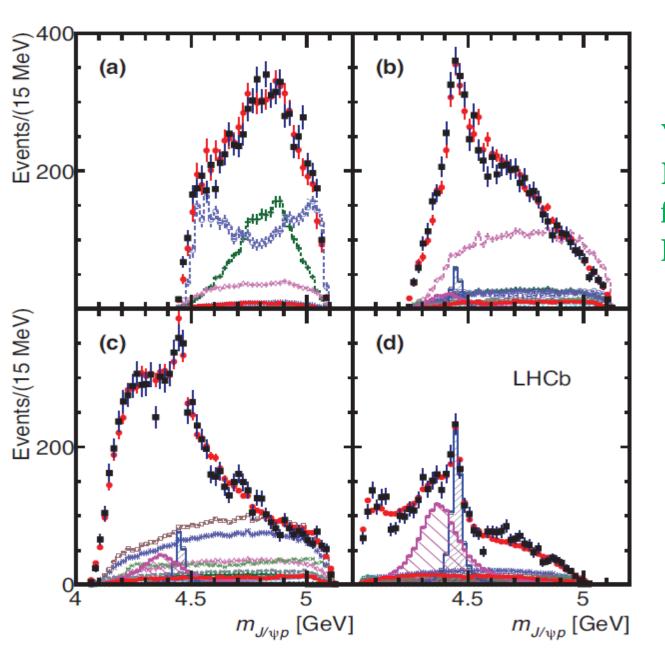
$$\Delta_{s_2}^{\max} = \sqrt{s_{2C}} - \sqrt{s_{2N}} \approx \frac{m_3}{2m_2(m_1 + m_3)} [(m_2 - m_1)^2 - s_3].$$

Largest discrepancy

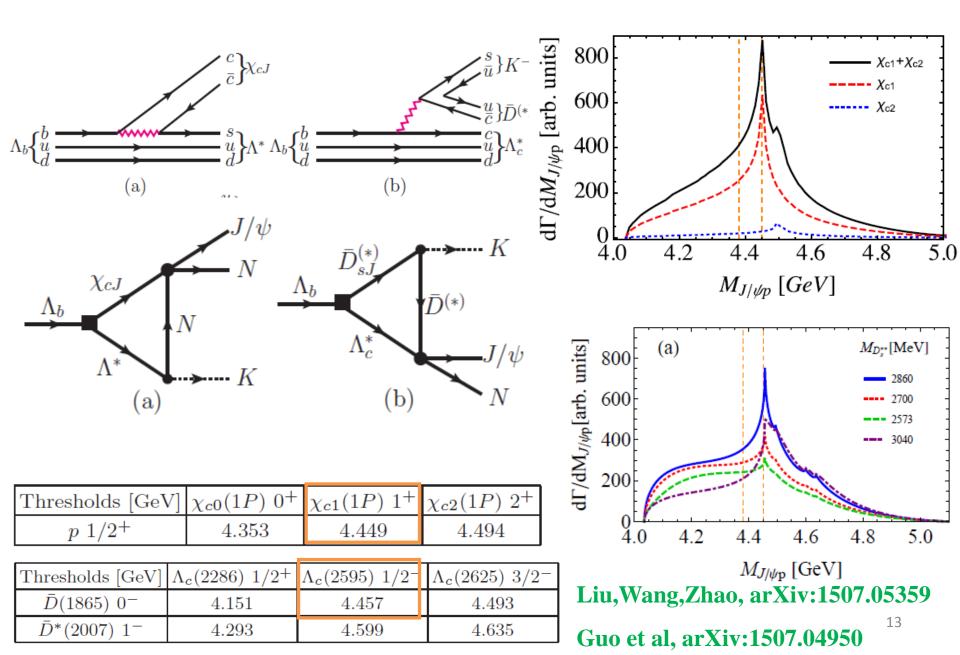

Liu, Oka, Zhao, PLB753,297 (2016)

arXiv:1507.01674

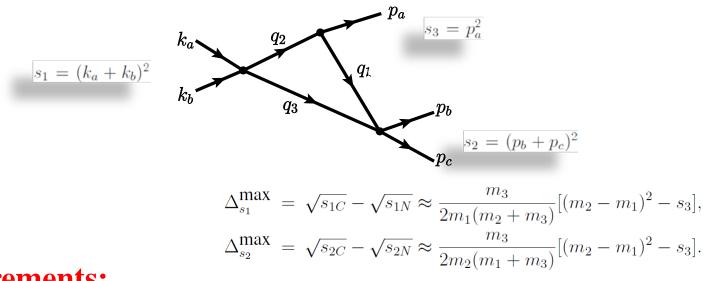
How to amplify the discrepancy between normal and anomalous threshold?


If the discrepancy is larger, maybe it could be used to distinguish the kinematic singularities from genuine particles. ¹⁰

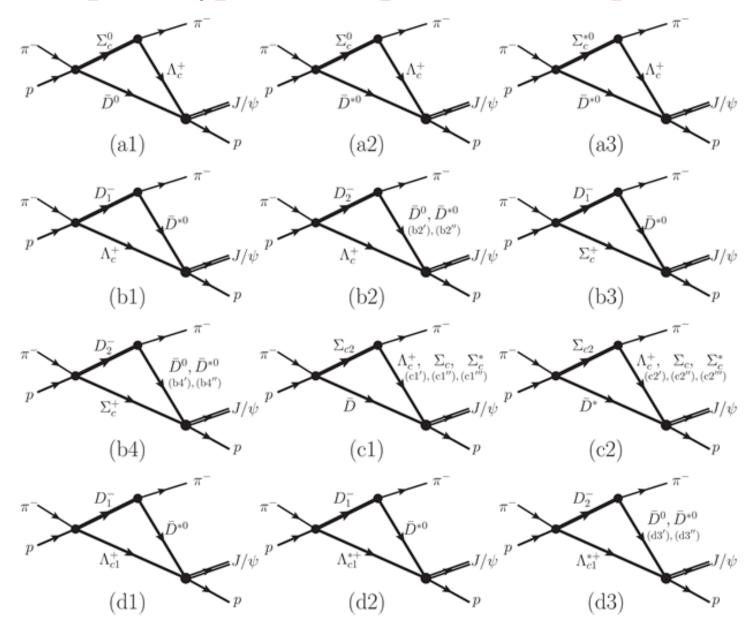
Heavy pentaquark "Pc" observed in LHCb


LHCb, arXiv: 1507.03414

Heavy pentaquark "Pc" observed in LHCb

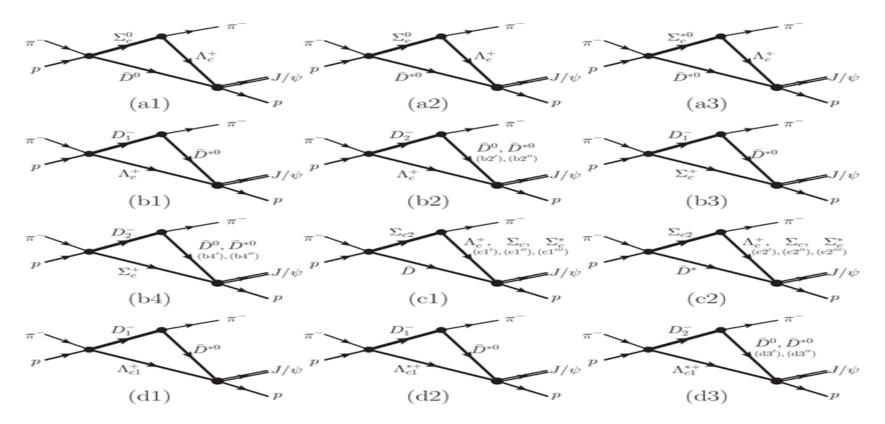

Various intervals of Kp invariant mass for the fit with two Pcs

TS mechanism and the heavy pentaquark "Pc"


Searching for the heavy pentaquark in $\pi p \rightarrow \pi J/\psi p$

TS mechanism is a highly process-dependent mechanism. Different kinds of processes are required to check it.

Requirements:


- ➤ The quantity [(m₂-m₁)² s₃] should be larger (phase space should be larger);
- > Particle q₂ should not be too broad;
- **Balance between the phase space and width.**

Liu, Oka, arXiv: 1602.07069

Particle in PDG	Notation	J^P	Mass [MeV]	Width [MeV]	
Λ_c^+	Λ_c^+	$\frac{1}{2}^{+}$	2286.46±0.14		
$\Lambda_{c}(2595)^{+}$	Λ_{c1}^+	$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}$	2592.25 ± 0.28	$2.6 {\pm} 0.6$	
$\Lambda_{c}(2625)^{+}$	Λ_{c1}^{*+}	$\frac{\frac{3}{2}}{2}$	2628.11±0.19	< 0.97	
$\Sigma_{c}(2455)^{++}$	Σ_c^{++}	$\frac{1}{2}^{+}$	2453.98±0.16	2.26 ± 0.25	
$\Sigma_{c}(2455)^{+}$	Σ_c^+	$\frac{\tilde{1}}{2}^+$	2452.9 ± 0.4	<4.6	Nota
$\Sigma_{c}(2455)^{0}$	Σ_c^0	$\frac{\tilde{1}}{2}^+$	2453.74±0.16	2.16 ± 0.26	chai
$\Sigma_c(2520)^{++}$	Σ_c^{*++}	$\frac{\tilde{3}}{2}^{+}$	2517.9±0.6	14.9 ± 1.5	in re
$\Sigma_{c}(2520)^{+}$	Σ_c^{*+}	$\frac{\tilde{3}}{2}^+$	2517.5±2.3	<17	
$\Sigma_{c}(2520)^{0}$	Σ_c^{*0}	$\frac{\overline{3}}{2}^+$	$2518.8 {\pm} 0.6$	14.5 ± 1.5	our
$\Sigma_{c}(2800)^{++}$	Σ_{c2}^{++}		2801^{+4}_{-6}	75^{+22}_{-17}	
$\Sigma_{c}(2800)^{+}$	Σ_{c2}^+	$\frac{\bar{3}}{2}^{-}?$	2792_{-5}^{+14}	62_{-40}^{+60}	
$\Sigma_{c}(2800)^{0}$	Σ_{c2}^0	$\frac{3}{2}^{-}?$ $\frac{3}{2}^{-}?$ $\frac{3}{2}^{-}?$	2806^{+5}_{-7}	72^{+22}_{-15}	
D^{0}	D^0	0-	$1864.84{\pm}0.07$		
D^{\pm}	D^{\pm}	0^{-}	1869.61 ± 0.10		
$D^*(2007)^0$	D^{*0}	1-	2006.96 ± 0.10	<2.1	
$D^{*}(2010)^{\pm}$	$D^{*\pm}$	1-	$2010.26 {\pm} 0.07$	0.0834 ± 0.0018	
$D_1(2420)^0$	D_{1}^{0}	1+	$2421.4{\pm}0.6$	27.4 ± 2.5	
$D_2(2460)^0$	D_{2}^{0}	2^{+}	2462.6 ± 0.6	49.0±1.3	
$D_2(2460)^{\pm}$	$\begin{array}{c} D_2^0 \\ D_2^{\pm} \end{array}$	2^{+}	2464.3±1.6	37±6	

Notations of the charmed hadrons in relevant with our discussion

I) (a1)-(a3): Both \overline{D} and Y_c are S-wave states,

II) (b1)-(b4): D is a P-wave state and Y_c is an S-wave state,
II) (c1)-(c2): D is an S-wave state and Y_c is a P-wave state,
IV) (d1)-(d3): Both D and Y_c are P-wave states.

1	Diagram #	$\sqrt{s_{1N}}$	$\sqrt{s_{1C}}$	$\Delta_{s_1}^{\max}$	$\sqrt{s_{2N}}$	$\sqrt{s_{2C}}$	$\Delta_{s_2}^{\max}$	
	(a1)	4317.7	4318.5	0.773	4151.4	4152.1	0.75	
	(a2)	4459.9	4460.7	0.806	4293.5	4294.3	0.78	
	(a3)	4524.5	4527.7	3.28	4293.5	4296.7	3.14	TS Kinematic Region
	(b1)	4708.0	4726.3	18.4	4293.5	4310.2	16.7	
	(b2′)	4750.9	4794.5	43.7	4151.4	4189.2	37.8	
	(b2")	4750.9	4773.5	22.7	4293.5	4314.0	20.4	
	(b3)	4874.3	4893.4	19.1	4459.9	4477.1	17.3	
	(b4′)	4917.2	4962.4	45.2	4317.7	4356.7	39.0	
	(b4″)	4917.2	4940.7	23.5	4459.9	4481.0	21.1	
	(c1′)	4665.8	4687.2	21.4	4151.4	4171.0	19.6	
	(c1″)	4665.8	4674.1	8.28	4317.7	4325.6	7.83	
	(c1‴)	4665.8	4670.7	4.83	4382.3	4387.0	4.62	
	(c2′)	4808.0	4830.3	22.3	4293.5	4313.9	20.4	
	(c2")	4808.0	4816.6	8.65	4459.9	4468.0	8.16	
	(c2‴)	4808.0	4813.0	5.05	4524.5	4529.3	4.82	
	(d1)	5013.7	5033.2	19.6	4599.2	4616.9	17.7	
	(d2)	5049.5	5069.2	19.7	4635.1	4652.9	17.8	
	(d3′)	5092.4	5139.2	46.8	4493.0	4533.1	40.2	
	(d3")	5092.4	5116.7	24.3	4635.1	4656.8	21.8	18

The model is built in the framework of heavy hadron chiral perturbation theory (HHChPT)

Charmed Meson Superfiled:

$$\begin{split} H_{1a} &= \frac{1+\psi}{2} [D_{a\mu}^{*} \gamma^{\mu} - D_{a} \gamma_{5}], \\ H_{2a} &= [\bar{D}_{a\mu}^{*} \gamma^{\mu} + \bar{D}_{a} \gamma_{5}] \frac{1-\psi}{2}, \\ T_{1a}^{\mu} &= \frac{1+\psi}{2} \left\{ D_{2a}^{\mu\nu} \gamma_{\nu} - \sqrt{\frac{3}{2}} D_{1a\nu} \right. \\ &\times \gamma_{5} \left[g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - v^{\mu}) \right] \right\}, \\ T_{2a}^{\mu} &= \left\{ \bar{D}_{2a}^{\mu\nu} \gamma_{\nu} + \sqrt{\frac{3}{2}} \bar{D}_{1a\nu} \right. \\ &\times \gamma_{5} \left[g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - v^{\mu}) \right] \right\} \frac{1-\psi}{2}, \\ &\left. \bar{H}_{1a,2a} = \gamma^{0} H_{1a,2a}^{\dagger} \gamma^{0}, \ \bar{T}_{1a,2a} = \gamma^{0} T_{1a,2a}^{\dagger} \gamma^{0}, \end{split}$$

Charmed Baryon Superfiled:

$$\begin{aligned} \mathcal{T}_{i} &= \frac{1}{2} \epsilon_{ijk} \frac{1 + \cancel{p}}{2} (B_{\bar{3}})_{jk}, \\ \mathcal{R}_{\mu} &= \frac{1}{\sqrt{3}} (\gamma_{\mu} + v_{\mu}) \gamma_{5} \frac{1 + \cancel{p}}{2} \Lambda_{c1}^{+} + \frac{1 + \cancel{p}}{2} \Lambda_{c1\mu}^{*+}, \\ \mathcal{S}_{\mu}^{ij} &= \frac{1 + \cancel{p}}{2} B_{6\mu}^{*ij} + \frac{1}{\sqrt{3}} (\gamma_{\mu} + v_{\mu}) \gamma_{5} \frac{1 + \cancel{p}}{2} B_{6}^{ij}, \\ \mathcal{X}_{\mu\nu}^{ij} &= \frac{1}{\sqrt{10}} \Big[(\gamma_{\mu} + v_{\mu}) \gamma_{5} g_{\nu}^{\alpha} + (\gamma_{\nu} + v_{\nu}) \gamma_{5} g_{\mu}^{\alpha} \Big] X_{\alpha}^{ij}, \\ (B_{3})_{ij} &= \begin{pmatrix} 0 & \Lambda_{c}^{+} & \Xi_{c}^{+} \\ -\Lambda_{c}^{+} & 0 & \Xi_{c}^{0} \\ -\Xi_{c}^{+} & -\Xi_{c}^{0} & 0 \end{pmatrix}_{ij} \qquad (B_{6})_{ij} = \begin{pmatrix} \Sigma_{c}^{++} & \frac{1}{\sqrt{2}} \Sigma_{c}^{+} & \frac{1}{\sqrt{2}} \Xi_{c}^{\prime +} \\ \frac{1}{\sqrt{2}} \Sigma_{c}^{+} & \Sigma_{c}^{0} & \frac{1}{\sqrt{2}} \Xi_{c}^{\prime 0} \\ \frac{1}{\sqrt{2}} \Xi_{c}^{\prime +} & \frac{1}{\sqrt{2}} \Xi_{c}^{\prime 0} & \Omega_{c}^{0} \end{pmatrix}_{ij} \\ (X)_{ij} &= \begin{pmatrix} \Sigma_{c2}^{++} & \frac{1}{\sqrt{2}} \Sigma_{c2}^{+} & \frac{1}{\sqrt{2}} \Xi_{c2}^{\prime 0} \\ \frac{1}{\sqrt{2}} \Xi_{c2}^{\prime +} & \frac{1}{\sqrt{2}} \Xi_{c2}^{\prime 0} \\ \frac{1}{\sqrt{2}} \Xi_{c2}^{\prime +} & \frac{1}{\sqrt{2}} \Xi_{c2}^{\prime 0} \end{pmatrix}_{ij} \end{aligned}$$

Effective Lagrangian, combing the chiral symmetry and the heavy quark spin symmetry

$$\mathcal{L}_{\text{meson}} = i \frac{h'}{\Lambda_{\chi}} \text{Tr} \big[\bar{H}_{2a} T_{2b}^{\mu} \gamma^{\nu} \gamma_{5} (D_{\mu} \mathcal{A}_{\nu} + D_{\nu} \mathcal{A}_{\mu})_{ba} \big] + \text{h.c.},$$

$$\mathcal{L}_{\text{baryon}} = -\sqrt{3} g_{2} \text{Tr} \big[\bar{B}_{\bar{3}} \mathcal{A}^{\mu} \mathcal{S}_{\mu} + \bar{\mathcal{S}}_{\mu} \mathcal{A}^{\mu} B_{\bar{3}} \big]$$

$$+ i h_{10} \epsilon_{ijk} \bar{\mathcal{T}}_{i} (D_{\mu} \mathcal{A}_{\nu} + D_{\nu} \mathcal{A}_{\mu})_{jl} \mathcal{X}_{kl}^{\mu\nu}$$

$$+ h_{11} \epsilon_{\mu\nu\sigma\lambda} v^{\lambda} \text{Tr} \big[\bar{\mathcal{S}}^{\mu} (D^{\nu} \mathcal{A}_{\alpha} + D_{\alpha} \mathcal{A}^{\nu}) \mathcal{X}^{\alpha\sigma} \big],$$

 $\mathcal{A}_{\mu} = \frac{i}{2} \left(\xi^{\dagger} \partial_{\mu} \xi - \xi \partial_{\mu} \xi^{\dagger} \right) \text{PRD56,5483(1997); Cheng\&Chua, PRD75,014006}$

$$\xi = e^{i\mathcal{M}/f_{\pi}}, \ \mathcal{M} = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}$$
$$D_{\mu} = \partial_{\mu} + \mathcal{V}_{\mu}, \qquad \mathcal{V}_{\mu} = \frac{1}{2} \left(\xi^{\dagger} \partial_{\mu} \xi + \xi \partial_{\mu} \xi^{\dagger} \right)$$

Coupling constants can be determined by the corresponding decay widths

$$h' = 0.43,$$

 $g_2 = 0.565,$
 $|h_{10}| = 0.85$

By means of the quark model

$$|h_{11}| = \sqrt{2} |h_{10}|$$

Prijol&Yan, PRD56,5483(1997)

D-wave decay modes (advantage for the TS mechanism)

$$\bar{D}_1 \to \bar{D}^*\pi, \, \bar{D}_2 \to \bar{D}^{(*)}\pi \quad \Sigma_{c2} \to \Lambda_c \pi / \Sigma_c^{(*)}\pi$$

Effective Lagrangian for $\overline{\mathcal{D}}Y_c \to J/\psi p$

 $\mathcal{L}_{ct} = g_{\Lambda_c} \bar{N} H_2 \bar{J} \mathcal{T}_3 + g_{\Sigma_c} \bar{N} \gamma_\mu \gamma_5 H_2 \bar{J} \mathcal{S}^\mu + i g_{\Lambda_{c1}} \partial_\mu \bar{N} H_2 \bar{J} \mathcal{R}^\mu,$

$$J = \frac{1+\psi}{2} [\psi(nS)^{\mu} \gamma_{\mu} - \eta_c(nS) \gamma_5] \frac{1-\psi}{2}$$
$$\bar{J} = \gamma^0 J \gamma^0.$$

For these short range interactions, from the dimensional analysis, it is expected that the couplings $g_{\Lambda_c}(g_{\Sigma_c})$ and $g_{\Lambda_{c1}}$ are of the order of magnitude of m_D^{-2} and m_D^{-3} respectively, where m_D is the mass of the *D* meson. Notice that in HHChPT, the heavy filed $H_2(J)$ in Eq. (26) will contain a factor $\sqrt{M_{H_2}}(\sqrt{M_J})$ for normalization. In addition, we will estimate the scattering amplitudes in the static limit, which means the four velocity is set to v = (1, 0, 0, 0).

Effective Lagrangian for $\ \pi^- p ightarrow \bar{\mathcal{D}} Y_c$, with the fewest derivatives

$$\mathcal{L}_{a1} = \frac{g_{a1}}{2m_D} \mathbb{D} \tau \cdot \pi \tau \cdot \bar{\Sigma}_{c} N, \qquad \mathcal{L}_{b4} = \frac{ig_{b4}}{2m_D^2} \mathbb{D}_{2}^{\mu\nu} \tau \cdot \partial_{\mu} \pi \tau \cdot \bar{\Sigma}_{c} \gamma_{5} \gamma_{\nu} N, \\ \mathcal{L}_{a2} = \frac{g_{a2}}{2m_D} \mathbb{D}_{\mu}^{*} \tau \cdot \pi \tau \cdot \bar{\Sigma}_{c} \gamma_{5} \gamma^{\mu} N, \qquad \mathcal{L}_{c1} = \frac{ig_{c1}}{2m_D^2} \mathbb{D} \tau \cdot \partial_{\mu} \pi \tau \cdot \bar{\Sigma}_{c2}^{\mu} N, \\ \mathcal{L}_{a3} = \frac{g_{a3}}{2m_D} \mathbb{D}_{\mu}^{*} \tau \cdot \pi \tau \cdot \bar{\Sigma}_{c}^{*\mu} N, \qquad \mathcal{L}_{c2} = \frac{ig_{c2}}{2m_D^2} \mathbb{D}_{\mu}^{*} \tau \cdot \partial_{\nu} \pi \tau \cdot \bar{\Sigma}_{c2}^{\mu} \gamma_{5} \gamma^{\nu} N, \\ \mathcal{L}_{b1} = \frac{ig_{b1}}{\sqrt{2}m_D^2} \mathbb{D}_{1}^{\mu} \tau \cdot \partial_{\mu} \pi \bar{\Lambda}_{c} N, \qquad \mathcal{L}_{d1} = \frac{g_{d1}}{\sqrt{2}m_D} \mathbb{D}_{1}^{\mu} \tau \cdot \pi \bar{\Lambda}_{c1} \gamma_{5} \gamma_{\mu} N, \\ \mathcal{L}_{b2} = \frac{ig_{b2}}{\sqrt{2}m_D^2} \mathbb{D}_{2}^{\mu\nu} \tau \cdot \partial_{\mu} \pi \bar{\Lambda}_{c} \gamma_{5} \gamma_{\nu} N, \qquad \mathcal{L}_{d2} = \frac{g_{d2}}{\sqrt{2}m_D} \mathbb{D}_{1}^{\mu} \tau \cdot \pi \bar{\Lambda}_{c1\mu}^{*} N, \\ \mathcal{L}_{b3} = \frac{ig_{b3}}{2m_D^2} \mathbb{D}_{1}^{\mu} \tau \cdot \partial_{\mu} \pi \tau \cdot \bar{\Sigma}_{c} N, \qquad \mathcal{L}_{d3} = \frac{g_{d3}}{\sqrt{2}m_D} \mathbb{D}_{2}^{\mu\nu} \tau \cdot \pi \bar{\Lambda}_{c1\mu}^{*} \gamma_{5} \gamma_{\nu} N, \end{aligned}$$

 $\mathbb{D} = (D^0, D^+)$

Open-charm Production

Experimental and theoretical constraints on the open-charm productions in πN collisions:

 $\sigma(\pi^- p \rightarrow D^{*-} \Lambda_c^+)$ and $\sigma(\pi^- p \rightarrow D^{*-} \Sigma_c^+)$ upper limit at 13 GeV is about 7 nb BNL, PRL55, 154(1985)

Effective Lagrangian method and Regge approach: at the orderof 1 nbS.H. Kim et al, PRD92, 094001 (2015); arXiv: 1405.3445

Generalized parton picture: at the order of nb S. Kofler et al, PRD91, 054027 (2015)

Our assumptions:

 $\sigma(\pi^- p \rightarrow \bar{\mathcal{D}}Y_c)$ is 1 nb at 20 GeV pion-beam energy

Open-charm Production

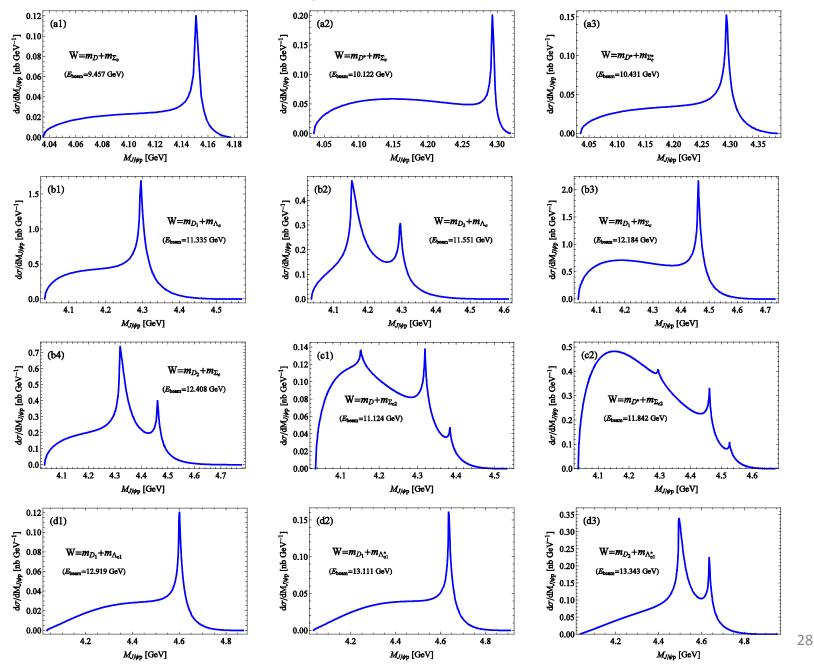
Coupling constants according to the assumpions

$$\sigma(\pi^- p \rightarrow \bar{\mathcal{D}}Y_c)$$
 is 1 nb at 20 GeV pion-beam energy

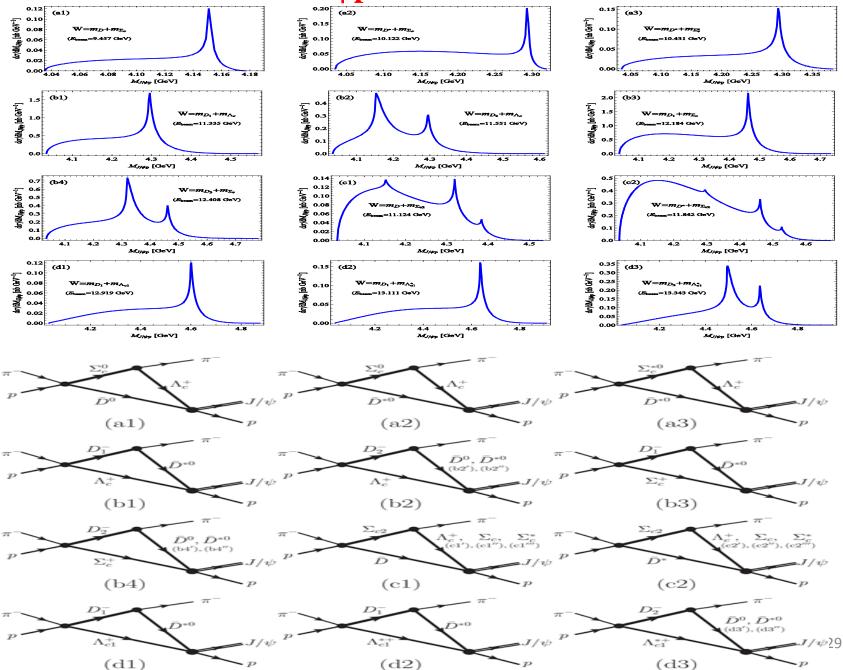
g_{a1}	g_{a2}	g_{a3}	g_{b1}	g_{b2}	g_{b3}
0.035	0.020	0.025	0.024	0.018	0.023
g_{b4}	g_{c1}	g_{c2}	g_{d1}	g_{d2}	g_{d3}
0.017	0.027	0.009	0.024	0.026	0.029

Width Effect of the Intermediate State

Adopt the Breit-Wigner type propagator in the triangle loop integral


$$G_{\mathcal{D}}^{(0)} = \frac{i}{q_{\mathcal{D}}^2 - m_{\mathcal{D}}^2 + i \ m_{\mathcal{D}} \Gamma_{\mathcal{D}}},$$

$$G_{Y_c}^{(\frac{1}{2})} = \frac{i \, m_{Y_c} (1 + \not\!\!\!\!/)}{q_{Y_c}^2 - m_{Y_c}^2 + i \, m_{Y_c} \Gamma_{Y_c}},$$


Rarita-Schwinger wave functions for higher spin particles

BW type propagator will remove the TS from the physical boundary by a small distance, if the corresponding decay width is smaller. I.J.R. Aitchison & C. Kacser, PR133, B1239 (1964)

Numerical Results: J/\u03c6p Invariant Mass Distribution

Numerical Results: J/yp Invariant Mass Distribution

Numerical Results: Total Cross Section

Diagram #	Cross Section [nb]
(a1)	0.003
(a2)	0.015
(a3)	0.011
(b1)	0.153
(b2)	0.056
(b3)	0.330
(b4)	0.113
(c1)	0.032
(c2)	0.166
(d1)	0.016
(d2)	0.024
(d3)	0.056

Summary

- Kinematic singularities (TS) of the rescattering amplitude will behave themselves as peaks in the invariant mass distribution, which may imply that non-resonance interpretations for some resonance-like structures is possible.
- Being different from the genuine resonances, the TS mechanism is a highly process-dependent mechanism, and very sensitive to the kinematic configurations.
- The forthcoming J-PARC pion-induced experiment may offer us a good opportunity to check different kinematic or dynamic mechanisms and clarify the ambiguities, with its high luminosity.