ExHIC in YITP, 2016, Mar.

Ξ resonances in the weak decay of Ξ_c

Kenta Miyahara (Kyoto univ.)

Collaborator : T. Hyodo (YITP) M. Oka (Tokyo Tech.) J. M. Nieves (Valencia univ.) E. Oset (Valencia univ.)

Contents

- * Introduction
 - Ξ resonances
- * Formalism
 - Weak decay process of Ξ_c
- * Results
 - $M_{\rm MB}$ distribution of $\Xi_{\rm c}$ decay
 - discussion
- * Summary

Introduction

- Weak decay
- qq creation
- Final State Interaction

exp.) Belle, BESIII, ...

- existence...?
- J^P...?
- theoretically controversial

* Ξ resonances

a small number of measured Ξ*
poor information about J^P

* $\Xi(1620)$

- one-star in PDG - $J^P = ?^?$

exp.) $K^- p \rightarrow K^0 (\pi^+ \Xi^-)$

theory) mainly coupled to $\pi \Xi$ and $\bar{K}\Lambda$ channels

Ramos, Oset, Benhold, Phys. Rev. Lett. 89 (2002) 252001

* $\Xi(1690)$ resonance

— three-star in PDG

-- $(M, \Gamma) = (1690 \pm 10, < 30) \text{ MeV}$ -- $J^{P} = ?^{?}$

theory)

- J^P assignment is controversial
- mainly coupled to $\overline{K}\Sigma$ and $\eta\Xi$ channels

Garcia-Recio, Lutz, Nieves, Phys. Lett. B 582 (2004) 49

exp.)

- K⁻, hyperon + nucleon \rightarrow ($\bar{K}\Sigma$), ($\bar{K}\Lambda$), ($\pi\Xi$) distribution
- $\Lambda_{c} \rightarrow K^{+}(\bar{K}\Lambda), (\bar{K}\Sigma), (\pi\Xi)$

some evidence of J^P=1/2⁻

5

Legendre polynomial moment :

$$P_{0} = \frac{1}{N} \int_{-1}^{1} \frac{dN}{d\cos\theta_{\Xi^{-}}} P_{0}(\cos\theta_{\Xi^{-}}) d\cos\theta_{\Xi^{-}}$$
$$= \frac{1}{\sqrt{2}} \left[|S^{1/2}|^{2} + |P^{1/2}|^{2} + |P^{3/2}|^{2} + |D^{3/2}|^{2} + |D^{5/2}|^{2} \right]$$

- * Ξ (1690) exp.
- $\Xi(1690)$ coupling to $\pi \Xi$ channel is too weak. $\rightarrow \overline{K}\Lambda, \overline{K}\Sigma$ are the ideal channels
- In $\Lambda_c \rightarrow K^+(\bar{K}\Lambda)$ reaction, $a_0(980)$ contribution is obstructive.

In $\Xi c \rightarrow \pi^+$ ($\overline{K}\Lambda$) process, other interaction effect is relatively small.

* Ξ (1690) exp.

- $\Xi(1690)$ coupling to $\pi \Xi$ channel is too weak. $\rightarrow \overline{K}\Lambda, \overline{K}\Sigma$ are the ideal channels
- In $\Lambda_c \rightarrow K^+(\bar{K}\Lambda)$ reaction, $a_0(980)$ contribution is obstructive.

In $\Xi c \rightarrow \pi^+$ ($\overline{K}\Lambda$) process, other interaction effect is relatively small.

Formalism

Considering Cabibbo-Kobayashi-Maskawa matrix and diquark correlation, the following diagram is favored.

Cabibbo favored diagrams

With the hadron degrees of freedom,

$$|MB\rangle = -\frac{1}{\sqrt{6}}|\bar{K}\Lambda\rangle - \sqrt{\frac{3}{2}}|\bar{K}\Sigma\rangle + \frac{1}{\sqrt{3}}|\eta\Lambda\rangle$$

Final State Interaction

$$\mathscr{M}_{j} = V_{P} \left(h_{j} + \sum_{i} h_{i} G_{i}(M_{\text{inv}}) t_{ij}(M_{\text{inv}}) \right)$$

$$\frac{\mathrm{d}\Gamma_j}{\mathrm{d}M_{\mathrm{inv}}} = \frac{1}{(2\pi)^3} \frac{p_{\pi^+} p_j M_{\Lambda_c^+} M_j}{M_{\Lambda_c^+}^2} |\mathscr{M}_j|^2$$

coefficients can be determined from |*MB*>

$$\begin{pmatrix} h_{\pi\Xi} = 0, \ h_{\bar{K}\Lambda} = -\frac{1}{\sqrt{6}}, \\ h_{\bar{K}\Sigma} = -\sqrt{\frac{3}{2}}, \ h_{\eta\Xi} = \frac{1}{\sqrt{3}}. \end{cases}$$

 G_i : meson-baryon loop function t_{ij} : meson-baryon scattering matrix chiral unitary approach

 $\Xi(1620)$ mainly coupleds to $\pi \Xi$ and $\overline{K}\Lambda$ channel

- IMB> does not include the πΞ channel.
- K
 ⁻ Λ loop function is small around the Ξ(1620) region below the K
 ⁻ Λ threshold.

In $\Xi_c^+ \rightarrow \pi^+$ (MB) reaction, $\Xi(1620)$ is difficult to see.

The ratios of the decay fractions may be useful.

Discussion

Comparison between Ξ_c^+ and Ξ_c^0 decays may clarify the effect of other diagrams.

Summary

- * We have studied $\Xi(1620)$ and $\Xi(1690)$ resonances from Ξ_c -decay.
- * Considering CKM matrix, color factor, diquark correlation, and kinematics, we have chosen the most favored diagram.
- * It has been found that the $\Xi(1620)$ peak is difficult to see in Ξ_c decay.
- * E(1690) peak has been seen clearly. The decay fraction may be useful to distinguish the resonance peak from the threshold effect.