

Overview of Strangeness Production and Baryon-Baryon Interactions from Heavy-Ion Collisions

Neha Shah

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

ExHIC Workshop YITP

→ Strangeness production in HIC

→ Baryon-Baryon interactions

→ Hypertriton life time

 $\rightarrow \Lambda \Lambda$ interactions

Preliminary results on Proton-Ω

Outline

Relativistic Heavy Ion Collider (RHIC)

Collision species	C.M. Energy per nucleon pair (GeV)	Physics
Polarized p+p	510, 200, 150	Spin physics
Au+Au	200, 130, 62.4, 39, 27, 19.6, 14.5, 11, 7.7	Quark Gluon Plasma properties, QCD Critical point search
Cu+Cu, Cu+Au	200, 62.4, 19.6, 22.4	Study initial conditions
d+Au	200	Cold nuclear matter
U+U	193	Study initial conditions

Solenoidal tracker at RHIC (STAR) SINAP BEMC MTD TPC TOF VPD Magnet Particle identification with **FPC+TOF** pion/kaon: pT ~ 1.6 GeV/c; proton pT ~ 3.0 GeV/c Strange hadrons (K 0 , Λ , Ξ , Ω) reconstructed by the decay HFT topology

Particle Identification with TPC+TOF

Excellent PID with TPC+TOF

Hyperon reconstruction

Strangeness Production

STAR BES: Study QCD Phase Diagram

Beam Energy Scan at RHIC:

Look for onset of de-confinement, identify the phase boundary and search for the QCD critical point

Systematic study of Au+Au collisions at 7.7, 11.5, 19.6, 27, 39 GeV (BES phase I)

Key Observables:

- 1) Strangeness enhancement
- 2) Baryon/meson ratio

3) Nuclear modification factor

Strange Particle Yields

• STAR results are consistent with published data in general • Λ yields show dip at $\sqrt{s_{_{NN}}} = 39$ GeV

Antibaryon to Baryon Ratio

thermal model

SINAP >Anti-baryon to baryon ratios are consistent with statistical

★μ_B/T ★μ_S/T

STAR Preliminary

 10^{2}

7.7 GeV

μ_в/Τ

3

2

 $\mu_{B}^{}/T$ and $\mu_{S}^{}/T$ $\overline{\Lambda}/\Lambda$ Ratio (<u>B</u>/B) L ▲ Ξ⁺/Ξ⁻ 10-1 10 √S_{NN} GeV $= \overline{\Omega}^+ / \Omega^-$ ื^ª 0.3⁻ ท/[°]ท่ ¥ STAR Au+Au 7.7-39 GeV (0-5%) NA57 Pb+Pb 17.3 GeV (0-53%) • NA49 **STAR Preliminary** ○ STAR Published -10⁻² 0.25 STAR BES STAR Preliminary 10² 10 √S_{NN} GeV 0.2 39

Antibaryon to Baryon Ratio

Strangeness, LQCD and freeze-out in HIC freeze-out T by comparing μ_{s}/μ_{B} from LQCD and expt.

not reproduced by hadron gas with only PDG states

reproduced when additional Quark Model (QM) predicted strange baryons are taken into account

Baryon to Meson Ratio

SINAP

Clear Λ, Ξ yield enhancement compared to pion with increasing collision energy

Nuclear Modification Factor

$$R_{\rm CP}(p_T) = \frac{[d^2\sigma/(N_{\rm bin}p_T dp_T dy)]_{\rm central}}{[d^2\sigma/(N_{\rm bin}p_T dp_T dy)]_{\rm peripheral}}$$

> No K_s⁰ suppression in Au+Au @ 7.7, 11.5

> At intermediate p_{τ} , particle $R_{_{CP}}$ difference becomes smaller for 7.7 and 11.5 GeV

Summary – I: Strangeness Production

- STAR has measured systematically the production of various strange hadrons in $\sqrt{s_{NN}} = 7.7 39$ GeV
- > Observed clear $\overline{\Lambda,\Xi}$ yield enhancement compared to pions with increasing collision energy
- \succ Intermediate $p_{_{\rm T}}$ nuclear modification factors show clear separation between different strange particles for 200 19.6 GeV
- ➢Below 19.6 GeV, the separation between different strange particles becomes small → indicating possible phase transition

Hypertriton Life-time

- ✓ First hyper nucleus was observed in 1952.
- ✓ Binding energy and lifetime are sensitive to YN interaction.
- ✓ The hypertriton being a loosely-bound nuclear system, its mean lifetime should be close to the free Lambda
- ✓ Life time measurements from Bubble chamber, emulsion and heavy-ion experiments are smaller than the free Λ life time.
- ✓ The hypertriton lifetime data are not accurate to distinguish between model, more precise measurements are needed.

Hypertriton life-time measurement

 $\tau = 182^{+89}_{-45}$ (stat) ± 27 (sys) ps (Science 328 (2010) 58)

- ✓ Signal from 2-body and 3-body decay
- ✓ Largest sample of hypertriton

Summary – II : Hypertriton Life-time

Baryon-Baryon Interactions

Baryon-Baryon Interactions

Baryon interactions are of fundamental interest in Nuclear Physics and Astrophysics

≻Neutron Star puzzle

>Interactions between pair of anti-particles \rightarrow examine CPT

- > $\Lambda\Lambda$ -==N Coupling is important to understand production of double- Λ hypernuclei
- > Methods:
 - → Scattering
 - Binding Energies
 - → Two particle correlation

\succ Two particle correlation function

$$C^{ab}_{\vec{K}}(\vec{q}) = \frac{d^6 N^{ab} / (dp_a^3 dp_b^3)}{(d^3 N^a / dp_a^3)(d^3 N^b / dp_b^3)} = \int d^3 \vec{r'} \cdot S^{ab}_{\vec{K}}(\vec{r'}) \cdot |f(\vec{q}, \vec{r'})|^2$$

 $S^{ab}_{\kappa}(r')$ – normalized separation distribution

f(q,r') – two-particle wave function, q = 2k* (quantum statistics, FSI:Coulomb int., Strong int.)

Standard procedure:

At low energies, the elastic cross section, σ_e , is solely determined by the scattering length,

$$\lim_{k \to 0} \sigma_e = 4\pi f_0^2$$

where k is the wave number.

The effective range d_0 of strong interaction between two particles correspond to the range of the potential in an extremely simplified scenario – the square well potential.

The f_0 and d_0 are two important parameters in characterizing the strong interaction between two particles.

$\Lambda - \Lambda$ interaction

ΛΛ Correlation Function

Fit function from Lednicky-Lyuboshitz analytical model:

 $C(Q) = N(1 + \lambda [\sum_{s} \rho_{s}(-1)^{s} exp(-r_{0}^{2}Q^{2}) + \Delta CF^{FSI} + a_{res} exp(-Q^{2}r_{res}^{2})])_{(SJNP 35 (1982) 770)}$

N- normalization, λ – suppression parameter, a_res – amplitude of residual term r_res – width of the Gaussian

 $\rho_0 = \frac{1}{4}(1-P^2) \rho_1 = \frac{1}{4}(3+P^2)$ P=Polariz.=0

 $\Delta CF^{\text{FSI}} = 2\rho_0 [\frac{1}{2} |f^0(k)/r_0|^2 (1-d_0^0/(2r_0\sqrt{\pi})) + 2Re(f^0(k)/(r_0\sqrt{\pi}))F_1(r_0Q) - 2Im(f^0(k)/r_0)F_2(r_0Q)]$

 r_0 - emission radius, d_0 - effective radius, f_0 – scattering length

Scattering amplitude: $f^{s}(k)=(1/f_{0}^{s}+1/2d_{0}^{s}k^{2}-ik)^{-1}$, k=Q/2

 $F_1(z) = \int_0^z dx \exp(x^2 - z^2)/z \quad F_2(z) = [1 - \exp(-z^2)]/z$

ΛΛ Correlation Function

Fit using Lednicky-Lyuboshitz analytical model:

$$\begin{split} \textbf{C}(\textbf{Q}) = \textbf{N}(1 + \lambda [\sum_{s} \rho_{s}(-1)^{s} exp(-r_{0}^{2}\textbf{Q}^{2}) + \Delta \textbf{C} \textbf{F}^{\text{FSI}} + \textbf{a}_{\text{res}} exp(-\textbf{Q}^{2}r_{\text{res}}^{2})]) \\ \textbf{N- normalization, } \lambda - suppression \text{ parameter} \end{split}$$

Interaction parameters:

Emission radius $r_0 = 2.96 \pm 0.38^{+0.96}_{-0.02}$ fm

Scattering length $a_0 = -1.10 \pm 0.37^{+0.68}_{-0.08}$ fm

Effective range $r_{eff} = 8.52 \pm 2.56^{+2.09}$ fm

 χ^{2} /NDF = 0.56

$\Lambda\Lambda$ Interaction Parameters

SINAP

Baryon-baryon interaction model \Rightarrow attractive potential

A rather weak interaction exists between $\Lambda\Lambda$ compared to NN and $p\Lambda$

STAR Collaboration, Phys. Rev. Lett 114, 022301 (2015) K. Morita, T. Furumoto and A. Ohnishi, Phys. Rev. C 91 024916 (2015) A. Ohnishi, HYP2015 Proceedings

H-dibaryon Signal from Coalescence Expectation

SINAP

Assuming H-dibaryon are stable against strong decay and are produced through coalescence of Λ pairs:

 $(1/2\pi p_{T})d^{2}N_{H}/dp_{T}dy = 16B ((1/2\pi p_{T})d^{2}N_{A}/dp_{T}dy)^{2}$,

where B is coalescence fraction. (Phys. Lett. B 350 (1995) 147)

Integrated yield $(dN_{H}/dy) = (1.23 \pm 0.47_{stat} \pm 0.61_{sys})x10^{-4}$

More experimental events are necessary to confirm or rule out the existence of resonance pole in low Q region

Antiproton-Antiproton interaction

Correlation function:

$$C_{meas}(k_{pp}^*) = 1 + x_{pp}[C_{pp}(k^*; R_{pp}) - 1] + x_{p\Lambda}[\widetilde{C}_{p\Lambda}(k_{pp}^*; R_{p\Lambda}) - 1] + x_{\Lambda\Lambda}[\widetilde{C}_{\Lambda\Lambda}(k_{pp}^*; R_{\Lambda\Lambda}) - 1]$$

$$\widetilde{C}_{\Lambda\Lambda}(k_{pp}^{*}) = \sum_{k_{\Lambda\Lambda}^{*}} C_{\Lambda\Lambda}(k_{\Lambda\Lambda}^{*})T(k_{\Lambda\Lambda}^{*}, k_{pp}^{*})$$
$$\widetilde{C}_{p\Lambda}(k_{pp}^{*}) = \sum_{k_{p\Lambda}^{*}} C_{p\Lambda}(k_{p\Lambda}^{*})T(k_{p\Lambda}^{*}, k_{pp}^{*})$$

where $C_{pp}(k^*)$ and $C_{p\Lambda}(k^*_{p\Lambda})$ are calculated by the Lednicky-Lyuboshitz model and $C_{\Lambda\Lambda}(k^*_{\Lambda\Lambda})$ is taken from STAR measurement.

 $R_{p\Lambda} = R_{\Lambda\Lambda} = R_{pp}$

T(k*,k*) is the corresponding transform matrices generated by THERMINATOR2 model to transform the $k^*_{p\Lambda}$ to k^*_{pp} or $k^*_{\Lambda\Lambda}$ to k^*_{pp} .

Antiproton-Antiproton Correlation

Proton-Ω Correlation Function

Proton-\Omega Correlation Function

\succ N- Ω potential may be attractive to form a bound state

Phy. Rev. Lett. 59 (1987) 627, Phy. Rev. C 69 (2004) 065207, Phy. Rev. C 70 (2004) 035204, Nucl. Phys. A 928 (2014) 89

Other Correlation Function

- SINAP
- > Proton- Ξ : $\Lambda\Lambda$ - Ξ N Coupling is important to understand production of double- Λ hypernuclei
- \succ Deuteron- Λ : Deeply bound kaonic states and to understand neutron- Λ interactions
- For k* < 0.5 GeV/c we have
- \rightarrow 20K pair of Proton-E for 0-5% centrality in 200 M MB Au+Au events
- $\rightarrow\,26K$ pair of deuteron-A for 0-80 % centrality in 100 M MB Au+Au events

> Work is in progress for Proton- Ξ and deuteron- Λ correlation functions Stay tuned for more results!

Summary – III: Interaction Parameters for Baryon-Baryon

p-p Mod. Phys. 39 (1967) 584

ΛΛ Nucl. Phys. A 707 (2002) 491

Nature 527 (2015) 345

March 23, 2016

37

Summary

Hypertriton life-time

- ClearA, E yield enhancement compared to pions with increasing collision energy
- > Intermediate p_{τ} nuclear modification factors show clear separation between different strange particles for 200 19.6 GeV
- ➢ Below 19.6 GeV, the separation between different strange particles becomes small → indicating possible phase transition

BB-Interaction Parameters

Thank you!