

Charmed and exotic hadron measurements with ALICE at the LHC

Yosuke Watanabe (CNS, University of Tokyo) for the ALICE collaboration

Outline

Motivation
ALICE detector
Results
Future plans
Summary

Particle production in heavy-ion collisions

ALICE

Statistical model

Thermodynamic approach assuming thermally and chemically equilibrated system

Coalescence model

- Hadrons (or nuclei) are formed by quarks (or nucleons) which are close in phase space
- Yields of hadrons provide insights into their internal structure and also into the degrees of freedom in the QGP
 - Λ_c production is related to the abundance of di-quark structures in the QGP (S.H.Lee et al PRL100(2008)222301)
 - Different hadrons probe different degrees of freedom
- Abundant strange quarks coalesce into exotica, such as H-dibaryon?

Heavy-quark vacuum fragmentation ExHIC2016

Hadrons

4

	Light	Charm	Bottom	
Mesons	See Jihye's talk	D mesons	B mesons	
Baryons	See Jinye's tark	Λ _c , Ξ _c , Ω _c	Λ _b , Ξ _b , Ω _b	
Exotics	Hypernuclei, Dibaryons, ,	T _{cc} , Ω _{ccc} , …	Τ _{cb} ,	

ExHIC2016

Hadrons

5

		Light	Charm	Bottom	
	Mesons	See Jihye's talk	D mesons	B mesons $B \rightarrow J/\psi + X$ $B \rightarrow e + X$	
	Baryons	See Jinye's talk	$Λ_{c}$ Ξ _c , Ω _c	Λ _b , Ξ _b , Ω _b	
	Exotica	Hypernuclei, Dibaryons, 	Τ _{cc} , Ω _{ccc} , …	Τ _{cb} ,	
ExHIC2016 Yosuke Watanabe					

ALICE detector

ALICE detector

SPD SDD SSD TOC VOC

- Excellent PID (hadrons, leptons, photons) and jets
- Excellent vertex capability (HF, V⁰s, cascades, conversions)
- Efficient low-momentum tracking down to 150 MeV/c

Anti-nuclei

8

- Anti-nuclei are abundantly produced in heavy-ion collisions
- Mass difference between nuclei and anti-nuclei provides a test of the CPT invariance
- Mass and binding energies of nuclei and anti-nuclei are compatible within experimental uncertainties

ExHIC2016

³_AH identification

9

CF

ALICE

PLB 754 (2016) 360

$_{\Lambda}^{3}$ H yield vs statistical models

10

ExHIC2016

3 _AH S₃ factor

- $S_3 \sim 1$ in a simple coalescence model
- Sensitive also to local baryonstrangeness correlation of the medium (PLB 684 (2010) 224)

The S₃ measurements at AGS, RHIC and LHC are compatible Thermal model and hybrid UrQMD describe the ALICE data

ExHIC2016

11

Yosuke Watanabe

PLB 754 (2016) 360

Searches for dibaryons

12

- ΛΛ: Predicted by Jaffe in bag model calculation (PRL 38 (1977) 195)
 - $\Box \Lambda \Lambda \to \Lambda + p + \pi^{-}$
- An-bar \rightarrow d-bar + π^+
- Both ΛΛ and Λn-bar are expected to be seen with the analyzed statistics (if they exist)

ExHIC2016

Upper limits on dN/dy

• No peak observed \rightarrow Set upper limits on dN/dy

Upper limits are compared to various model calculations as a function of BR

Upper limits are one order of magnitude smaller than model calculations

ExHIC2016

Heavy-flavor hadrons

- Fragment into hadrons
 - Same as vacuum fragmentation?
 - Recombination with surrounding light quarks?
- Lose energy while traversing the medium
 - Collisional energy loss?
 - Radiative energy loss?

 Heavy quarks are produced in initial hard scattering processes
 They will experience the whole system evolution

ExHIC2016

14

D-meson reconstruction

- Only full reconstruction studies are presented
- Signal extraction is performed through invariant mass analysis
- S/B improvement
 - TPC and TOF particle identification
 - Secondary vertex finding with ITS

	Cτ (μm)	BR (%)
D⁰→K⁻π	123	3.88
$D^+ \rightarrow K^- \pi^+ \pi^+$	312	9.13
$D^{*+} \rightarrow D^{0} \pi^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$		67.7
$D_s^+ \rightarrow \phi \pi^+ \rightarrow K^+ K^- \pi^+$	150	2.28

Entries / (10 MeV/c²

1400E

1200

800

|v| < 0.8

Pb-Pb

 $D^0 \rightarrow K^- \pi^+$ and charge conj.

 $S(3\sigma) = 2034 \pm 106$ $S/B(3\sigma) = 0.24$

5 < p_ < 8 GeV/c

ALICE, 0-10% Pb-Pb, $\sqrt{s_{_{
m NN}}}$ = 2.76 TeV

 $\mu = (1.866 \pm 0.001) \text{ GeV}/c^2$

ExHIC2016

ient

pp reference

Nuclear modification factor R_{AA}

16

$$R_{\rm AA}(p_{\rm T}) = \frac{dN_{\rm AA}/dp_{\rm T}}{\langle T_{\rm AA} \rangle d\sigma_{\rm pp}/dp_{\rm T}} \sim \frac{QCD \text{ medium}}{QCD \text{ vacuum}}$$

- Charm production in heavy-ion collisions is expected to scale with N_{coll}
- \square $R_{AA} = 1$: no medium effects
- $\square R_{AA} \neq 1:$
 - Cold-nuclear-matter effects
 - Energy loss of charm quark in the QGP
 - Change in hadronization
 - etc

D-meson R_{AA} and R_{pA}

17

Strong suppression of D mesons at high p_{T} in Pb-Pb collisions

- Not seen in p-Pb collisions
 - Strong suppression is due to final-state effects
- Stronger suppression in central than in semi-central collisions
 - In-medium energy loss of charm quarks

ExHIC2016

Comparison with other hadrons

□ R_{AA} integrated over high p_T region, 8 < p_T < 16 GeV/c

Expected hierarchy in the energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

- What we see: $R_{AA}(\pi) \sim R_{AA}(D) < R_{AA}(B)$
 - Different shapes of the parton p_{T} spectra
 - Different parton fragmentation functions
 - Different energy loss for charm and beauty is confirmed 016
 Yosuke Watanabe

ExHIC2016

D_s-

- D_s⁺ provides a unique insight into charm-quark hadronization mechanism
 - Strangeness enhancement in heavy-ion collisions affects charm-quark hadronization in the coalescence picture
- $\rho_T > 8 \text{ GeV/}c$: compatible with other D mesons
- $p_T < 8 \text{ GeV}/c$: hint of less suppression

ExHIC2016

D-meson azimuthal anisotropy

 $E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$

 v_2 : elliptic flow

Low and intermediate p_{T}

- Rescattering of charm quarks with the surrounding medium
 - Degree of charm-quark thermalization
- Hadronization mechanisms

• High p_{T}

Path-length dependence of charm-quark energy loss

ExHIC2016

D-meson V_2

PRC90 (2014) 034904 \sim [· · ·] · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · · ·] · ·] · ·] · ·] · · ·] ·] · ·] · ·] ·] · ·] ·] · ·] ·] ·] ·] ·] · ·] ·] · ·] · ·] · ·] ·] · ·] · ·] ·] · ·] ·] · ·] · Prompt $D^{0} |y| < 0.8$, $v_{2} \{ EP \}$ 0.6 ALICE Syst. from data Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Syst. from B feed-down 0.4 Charged particles, v_2 {EP, $|\Delta\eta|>2$ } 0.2 -0.2 30-50% 0 - 10%10-30% 8 10 12 14 16 18 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 2 4 p_ (GeV/c) p_{τ} (GeV/c) *p*_{_} (GeV/*c*) ALI-PUB-70100

• Positive v_2 is observed (5σ effect for $2 < p_T < 6$ GeV/c in 30-50% centrality bin)

- D-meson v_2 tends to be larger in semi-central than in central collisions
- D-meson v_2 is similar to that of charged particles
 - Significant interaction of charm quarks with the medium (PRL 111 (2013) 102301)

ExHIC2016

Model comparisons

- Various models with different energy-loss mechanisms, fireball evolution, hadronization, etc
- Simultaneous description of R_{AA} and v_2 seems challenging for models ExHIC2016

D mesons in small systems

23

- D-meson production is studied as a function of multiplicity in pp and p-Pb collisions
 - Study the interplay between hard and soft processes of particle production
- The increase of self-normalized yields with multiplicity is faster than linear
- EPOS 3 including hydro describes the data slightly better than the one without hydro

- $\hfill \Lambda_c$ production is sensitive to the abundance of di-quark structures in the QGP
- $\hfill \Lambda_c$ production is not well known even in elementary collisions at LHC energies
 - We are currently working on its measurement in pp and p-Pb collisions

Beauty hadron's R_{AA}

25

- Beauty-hadron measurements are currently limited to semileptonic decay and $B \rightarrow J/\psi + X$ (JHEP 1507(2015)051)
- Semileptonic decay analysis
 - Electrons from beauty can be identified with their large impact parameter
 - Hint of $R_{AA} < 1$ for $p_T > 3$ GeV/c

Planned upgrades (2021-)

~100 times larger statistics ~3 times better impact parameter resolution

26

ys. G 41 (2014) 087001	Upgrade	
Observable	$p_{\mathrm{T}}^{\mathrm{Umin}}$ (GeV/c)	statistical uncertainty
D meson R_{AA}	0	0.3 % at $p_{\rm T}^{\rm Amin}$
D meson from B decays R_{AA}	2	1 % at $p_{\mathrm{T}}^{\mathrm{Amin}}$
D meson elliptic flow ($v_2 = 0.2$)	0	2.5 % at $p_{\rm T}^{\rm Amin}$
D from B elliptic flow ($v_2 = 0.1$)	2	20 % at $p_{\mathrm{T}}^{\mathrm{Umin}}$
Charm baryon-to-meson ratio	2	15 % at $p_{\rm T}^{\rm Umin}$
$D_s meson R_{AA}$	1	1 % at $p_{\mathrm{T}}^{\mathrm{Amin}}$

These are possible only with significant upgrade of detectors
 TPC: continuous readout using GEM technology
 ITS: High resolution, low material budget

Hadrons

	Light	Charm	Bottom	
Meson	See Jihye's tall	D mesons	B r sons +X X	
Baryon	See Jinye's tair	$\Lambda_c \in \Omega_c$	$Λ_{b}$, Ξ _b , Ω _b	
Exotics	Hypernuclei, Dibar ,	Tce, wccc, …	Tcb, …	

ExHIC2016

Yosuke Watanabe

ALICE

Hypernuclei + Exotica

	J. Phys. G 41 (2014) 087001
	Expected yields
Anti-α	30,000
${}^{3}{}_{\Lambda}H$	300,000
${}^{4}{}_{\Lambda}H$	800
4 _{ΛΛ} Η	34
ΞΞ	150,000
10^{10} central Pb-Pb collisions at $\sqrt{s_{NN}} = 5.5$ TeV 8% efficiency per detected baryon is assumed	

ExHIC2016

Charm and beauty hadrons

29

- Increased statistics + better vertexing capability will enable further studies of Λ_c
- Beauty hadrons can also be fully reconstructed

ExHIC2016

Summary

30

- ALICE is an ideal place to measure rare hadron production in heavy-ion collisions
- Hypertriton yield and lifetime are measured
- Our data do not support the existence of $\Lambda\Lambda$ and Λ n
 - Our upper limits are one order of magnitude smaller than model calculations
- D-meson production in Pb-Pb collisions is intensively studied
 - Strong suppression ($R_{AA} < 1$)
 - $\blacksquare R_{AA}(\pi) \sim R_{AA}(D) < R_{AA}(B)$
 - Positive v₂
 - Combination of R_{AA} and v_2 starts constraining theoretical models
 - **\square** Hint of less suppression for D_s^+
- More to come from existing data, e.g. Λ_c
- much more to come after ALICE upgrade

