Charmed and exotic hadron measurements with ALICE at the LHC

Yosuke Watanabe (CNS, University of Tokyo) for the ALICE collaboration
Outline

- Motivation
- ALICE detector
- Results
- Future plans
- Summary
Particle production in heavy-ion collisions

- **Statistical model**
 - Thermodynamic approach assuming thermally and chemically equilibrated system

- **Coalescence model**
 - Hadrons (or nuclei) are formed by quarks (or nucleons) which are close in phase space
 - Yields of hadrons provide insights into their internal structure and also into the degrees of freedom in the QGP
 - Λ_c production is related to the abundance of di-quark structures in the QGP (S.H.Lee et al PRL100(2008)222301)
 - Different hadrons probe different degrees of freedom
 - Abundant strange quarks coalesce into exotica, such as H-dibaryon?

- **Heavy-quark vacuum fragmentation**
<table>
<thead>
<tr>
<th></th>
<th>Light</th>
<th>Charm</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesons</td>
<td></td>
<td>D mesons</td>
<td>B mesons</td>
</tr>
<tr>
<td>Baryons</td>
<td></td>
<td>$\Lambda_c, \Xi_c, \Omega_c$</td>
<td>$\Lambda_b, \Xi_b, \Omega_b$</td>
</tr>
<tr>
<td>Exotics</td>
<td>Hypernuclei, Dibaryons,</td>
<td>$T_{cc}, \Omega_{ccc}, \ldots$</td>
<td>T_{cb}, \ldots</td>
</tr>
</tbody>
</table>

See Jihye’s talk
Hadrons

<table>
<thead>
<tr>
<th></th>
<th>Light</th>
<th>Charm</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesons</td>
<td></td>
<td>D mesons</td>
<td>B mesons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(B \rightarrow J/\psi + X)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(B \rightarrow e + X)</td>
</tr>
<tr>
<td>Baryons</td>
<td></td>
<td>(\Lambda_c, \Xi_c, \Omega_c)</td>
<td>(\Lambda_b, \Xi_b, \Omega_b)</td>
</tr>
<tr>
<td>Exotica</td>
<td>Hypernuclei, Dibaryons, ...</td>
<td>(T_{cc}, \Omega_{ccc}, \ldots)</td>
<td>(T_{cb}, \ldots)</td>
</tr>
</tbody>
</table>

See Jihye’s talk

ExHIC2016
Yosuke Watanabe
ALICE detector

Central Barrel ($|\eta|<0.9$)
- 2π tracking & PID
- ITS
- TPC
- TOF

Forward detectors
- Trigger, centrality, timing

pp 7 TeV
p-Pb 5.02 TeV
Pb-Pb 2.76 TeV
ALICE detector

- Excellent PID (hadrons, leptons, photons) and jets
- Excellent vertex capability (HF, V^0s, cascades, conversions)
- Efficient low-momentum tracking down to 150 MeV/c
Anti-nuclei

- Anti-nuclei are abundantly produced in heavy-ion collisions
- Mass difference between nuclei and anti-nuclei provides a test of the CPT invariance
- Mass and binding energies of nuclei and anti-nuclei are compatible within experimental uncertainties
Hypertriton (pnΛ) is measured in $^3\Lambda$H decay mode

Topological cuts are applied to reduce combinatorial background

Measured hypertriton lifetime is compatible with other measurements

$\tau = 181^{+54}_{-39}(stat) \pm 33(syst)$ ps
Different statistical models describe light particle yields with $T_{\text{chem}} \sim 156$ MeV. Hypernuclei production is also compatible with the models.
$S_3 \approx 1$ in a simple coalescence model
• Sensitive also to local baryon-strangeness correlation of the medium (PLB 684 (2010) 224)

- The S_3 measurements at AGS, RHIC and LHC are compatible
- Thermal model and hybrid UrQMD describe the ALICE data
Searches for dibaryons

- $\Lambda\Lambda$: Predicted by Jaffe in bag model calculation (PRL 38 (1977) 195)
 - $\Lambda\Lambda \rightarrow \Lambda + p + \pi^-$
 - Λn-bar $\rightarrow d$-bar + π^+
- Both $\Lambda\Lambda$ and Λn-bar are expected to be seen with the analyzed statistics (if they exist)
No peak observed → Set upper limits on dN/dy

Upper limits are compared to various model calculations as a function of BR

- Upper limits are one order of magnitude smaller than model calculations
Heavy-flavor hadrons

- Fragment into hadrons
 - Same as vacuum fragmentation?
 - Recombination with surrounding light quarks?

- Lose energy while traversing the medium
 - Collisional energy loss?
 - Radiative energy loss?

- Heavy quarks are produced in initial hard scattering processes
 - They will experience the whole system evolution
D-meson reconstruction

- Only full reconstruction studies are presented
- Signal extraction is performed through invariant mass analysis
- S/B improvement
 - TPC and TOF particle identification
 - Secondary vertex finding with ITS

<table>
<thead>
<tr>
<th></th>
<th>$c\tau$ (μm)</th>
<th>BR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow K^-\pi$</td>
<td>123</td>
<td>3.88</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^-\pi^+\pi^+$</td>
<td>312</td>
<td>9.13</td>
</tr>
<tr>
<td>$D^{*+} \rightarrow D^0\pi^+ \rightarrow K^-\pi^+\pi^+$</td>
<td>67.7</td>
<td></td>
</tr>
<tr>
<td>$D_s^+ \rightarrow \phi^+ \rightarrow K^+K^-\pi^+$</td>
<td>150</td>
<td>2.28</td>
</tr>
</tbody>
</table>
Nuclear modification factor R_{AA}

Charm production in heavy-ion collisions is expected to scale with N_{coll}

- $R_{AA} = 1$: no medium effects
- $R_{AA} \neq 1$:
 - Cold-nuclear-matter effects
 - Energy loss of charm quark in the QGP
 - Change in hadronization
 - etc
D-meson R_{AA} and R_{pA}

- Strong suppression of D mesons at high p_T in Pb-Pb collisions
 - Not seen in p-Pb collisions
 - Strong suppression is due to final-state effects
 - Stronger suppression in central than in semi-central collisions
 - In-medium energy loss of charm quarks
Comparison with other hadrons

- R_{AA} integrated over high p_T region, $8 < p_T < 16$ GeV/c
- Expected hierarchy in the energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- What we see: $R_{AA}(\pi) \sim R_{AA}(D) < R_{AA}(B)$
 - Different shapes of the parton p_T spectra
 - Different parton fragmentation functions
 - Different energy loss for charm and beauty is confirmed
D_s^+ provides a unique insight into charm-quark hadronization mechanism
 - Strangeness enhancement in heavy-ion collisions affects charm-quark hadronization in the coalescence picture
 - $p_T > 8 \text{ GeV}/c$: compatible with other D mesons
 - $p_T < 8 \text{ GeV}/c$: hint of less suppression

ExHIC2016
Yosuke Watanabe
D-meson azimuthal anisotropy

- Low and intermediate p_T
 - Rescattering of charm quarks with the surrounding medium
 - Degree of charm-quark thermalization
 - Hadronization mechanisms
- High p_T
 - Path-length dependence of charm-quark energy loss

\[E \frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_{RP})] \right) \]

v_2: elliptic flow
D-meson v_2

- Positive v_2 is observed (5σ effect for 2 < p_T < 6 GeV/c in 30-50% centrality bin).
- D-meson v_2 tends to be larger in semi-central than in central collisions.
- D-meson v_2 is similar to that of charged particles.
 - Significant interaction of charm quarks with the medium (PRL 111 (2013) 102301)
Various models with different energy-loss mechanisms, fireball evolution, hadronization, etc

Simultaneous description of R_{AA} and v_2 seems challenging for models
D mesons in small systems

- D-meson production is studied as a function of multiplicity in pp and p-Pb collisions
 - Study the interplay between hard and soft processes of particle production
 - The increase of self-normalized yields with multiplicity is faster than linear
 - EPOS 3 including hydro describes the data slightly better than the one without hydro

Figures

- **Figure 1**: ALICE Average D^0, D^*, D^{**} meson production in pp, $p + \bar{p} = 7$ TeV and p-Pb, $\sqrt{s_{NN}} = 5.02$ TeV collisions.
 - $2 < p_T < 4$ GeV/c, $|y| < 0.5$
 - p in red, \bar{p} in green.
 - Normalization uncertainty not shown.

- **Figure 2**: B feed-down and normalization uncertainty.
 - $1 < p_T < 2$ GeV/c.
 - $2 < p_T < 4$ GeV/c.

References

`arXiv: 1602.07240`
Λ_c production is sensitive to the abundance of di-quark structures in the QGP.

Λ_c production is not well known even in elementary collisions at LHC energies.

- We are currently working on its measurement in pp and p-Pb collisions.
Beauty hadron’s R_{AA}

- Beauty-hadron measurements are currently limited to semileptonic decay and $B \rightarrow J/\psi + X$ (JHEP 1507(2015)051)
- Semileptonic decay analysis
 - Electrons from beauty can be identified with their large impact parameter
 - Hint of $R_{AA} < 1$ for $p_T > 3$ GeV/c
Planned upgrades (2021-)

- These are possible only with significant upgrade of detectors
 - TPC: continuous readout using GEM technology
 - ITS: High resolution, low material budget

~100 times larger statistics
~3 times better impact parameter resolution

<table>
<thead>
<tr>
<th>Observable</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p_T^{Umin}</td>
</tr>
<tr>
<td></td>
<td>(GeV/c)</td>
</tr>
<tr>
<td>D_0 meson R_{AA}</td>
<td>0</td>
</tr>
<tr>
<td>D meson from B decays R_{AA}</td>
<td>2</td>
</tr>
<tr>
<td>D meson elliptic flow ($\nu_2 = 0.2$)</td>
<td>0</td>
</tr>
<tr>
<td>D from B elliptic flow ($\nu_2 = 0.1$)</td>
<td>2</td>
</tr>
<tr>
<td>Charm baryon-to-meson ratio</td>
<td>2</td>
</tr>
<tr>
<td>D_s meson R_{AA}</td>
<td>1</td>
</tr>
</tbody>
</table>
Hadrons

<table>
<thead>
<tr>
<th></th>
<th>Light</th>
<th>Charm</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meson</td>
<td></td>
<td>D mesons</td>
<td>R mesons</td>
</tr>
<tr>
<td>Baryon</td>
<td></td>
<td>Λ_c, Ξ_c, Ω_c</td>
<td>Λ_b, Ξ_b, Ω_b</td>
</tr>
<tr>
<td>Exotics</td>
<td>Hypernuclei, Dibaryons</td>
<td>Tcc, wccc, …</td>
<td>Tcb, …</td>
</tr>
</tbody>
</table>

See Jihye’s talk

ExHIC2016
Yosuke Watanabe
Hypernuclei + Exotica

<table>
<thead>
<tr>
<th></th>
<th>Expected yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-α</td>
<td>30,000</td>
</tr>
<tr>
<td>$^{3}_{\Lambda}H$</td>
<td>300,000</td>
</tr>
<tr>
<td>$^{4}_{\Lambda}H$</td>
<td>800</td>
</tr>
<tr>
<td>$^{4}_{\Lambda\Lambda}H$</td>
<td>34</td>
</tr>
<tr>
<td>XX</td>
<td>150,000</td>
</tr>
</tbody>
</table>

10^{10} central Pb-Pb collisions at $\sqrt{s_{NN}} = 5.5$ TeV
8% efficiency per detected baryon is assumed
Charm and beauty hadrons

- Increased statistics + better vertexing capability will enable further studies of Λ_c
- Beauty hadrons can also be fully reconstructed

ExHIC2016
Yosuke Watanabe
Summary

- ALICE is an ideal place to measure rare hadron production in heavy-ion collisions
- Hypertriton yield and lifetime are measured
- Our data do not support the existence of $\Lambda\Lambda$ and Λn
 - Our upper limits are one order of magnitude smaller than model calculations
- D-meson production in Pb-Pb collisions is intensively studied
 - Strong suppression ($R_{AA} < 1$)
 - $R_{AA}(\pi) \sim R_{AA}(D) < R_{AA}(B)$
 - Positive v_2
 - Combination of R_{AA} and v_2 starts constraining theoretical models
 - Hint of less suppression for D_s^+
- More to come from existing data, e.g. Λ_c
- ... much more to come after ALICE upgrade