Difficulties in the direct method for two baryon systems in lattice QCD

Sinya AOKI

Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University

Realistic hadron interactions in QCD November 21 - December 2, 2016 Yukawa Institute for Theoretical Physics, Kyoto University

For HAL QCD Collaboration

YITP, Kyoto:Sinya Aoki, Daisuke Kawai*, Takaya Miyamoto*, Kenji SasakiRiken:Takumi Doi, Tetsuo Hatsuda, Takumi IritaniRCNP, Osaka:Yoichi Ikeda, Noriyoshi Ishii, Keiko MuranoTsukuba:Hidekatsu NemuraNihon:Takashi InoueTours, France:Sinya GongyoBirjand, Iran:Faisal Etminan* PhD students

Introduction What is an issue ?

Lattice QCD methods for two-baryons

Both are theoretically equivalent, but

Both must agree. We therefore have to identify sources of this discrepancy.

Introduction

- I. Direct method
- II. Mirage problem (Operator dependence)
- III. Sanity check
- **IV.** Conclusion

I. Direct method

Extraction of energy shift

Energy shift

 $\Delta E \equiv E_{NN} - 2m_N$ O(10 MeV) O(2 GeV) O(2 GeV) large cancellation 0.5 % accuracy required

Ratio $R(t) = \frac{G_{NN}(t)}{G_N(t)^2} \sim e^{-\Delta E t}$

expect cancellation of both statistical and systematic errors

Effective energy shift

$$\Delta E(t) = \frac{1}{a} \log \frac{R(t)}{R(t+a)} \longrightarrow \Delta E, \qquad t \to \infty$$

Plateau method

We identify $\Delta E(t)$ as ΔE , if it becomes constant.

YIKU 2012: PRD86(2012)074514

Is the plateau method reliable ?

Excitation energy $E_1 - E_0$

binding energy: very small finite volume effect for scattering state $\simeq \frac{1}{m_N} \frac{(2\pi)^2}{L^2}$

Observing the plateau guarantees the ground state saturation even when $t \gg 1/(E_1 - E_0)$ is NOT satisfied.

claimed by Y(I)KU('11,'12,'15), NPL('12,'13,'15), CalLat('15)

Examination of the statement

Mock-up data @ $m_{\pi} = 0.5 \text{ GeV}, L = 4 \text{ fm (setup of YIKU2012)}$

$$R(t) = e^{-\Delta Et} \left(1 + b \ e^{-\delta E_{\rm el}t} + c \ e^{-\delta E_{\rm inel}t} \right)$$

 $\delta E_{\rm el} \propto \frac{1}{L^2}$ the lowest excitation energy of elastic scattering state $\delta E_{\rm el} = 50 \text{ MeV} \text{ at } L \simeq 4 \text{ fm}$ $b = \pm 0.1$ 10 % contamination b = 0 for a comparison $e^{2m_N \cdot t} \langle 0|T[N(\vec{x},t)N(\vec{y},t) \cdot \overline{\mathcal{J}}_{NN}(t=0)]|0\rangle$ $\sum_{\vec{k}}^{\delta E_{\text{inel}} = 500 \text{ MeV}} \text{ the inelastic energy from heavy pions}$ $a_{\vec{k}} \exp\left(-t\Delta W(\vec{k})\right) \psi_{\vec{k}}(\vec{x})$ 1% contaminationInelastic region Elastic region 2m_N +mπ 2m_N

Zoom + increasing errors and fluctuations

Zoom + increasing errors and fluctuations

Observing the plateau guarantees the ground state saturation even when $t \gg 1/(E_1 - E_0)$ is NOT satisfied. claimed by Y(I)KU('11,'12,'15), NPL('12,'13,'15), CalLat('15)

It's a Myth !

II. Mirage problem (Operator dependence)

- Manifestation of the problem I -

T. Iritani et al. (HAL QCD), JHEP1610(2016)101 (arXiv:1607.06371)

Source operator dependence of plateaux

quark wall source vs quark smeared source

b are different between the two.

Lattice setup 2+1 flavor QCD

same gauge configurations of YIKU 2012

$$a = 0.09 \text{ fm} (a^{-1} = 2.2 \text{ GeV})$$

 $m_{\pi} = 0.51 \text{ GeV}, m_N = 1.32 \text{ GeV}, m_K = 0.62 \text{ GeV}, m_{\Xi} = 1.46 \text{ GeV}$

smaller statistical errors

- Not surprisingly, two sources disagree.
- The potential danger becomes reality.
- Plateau-like structures around t=1-1.5 fm are by no means trustable.
- Both might agree at t > 18a, but errors are too large.

Same problem also appears for NN

 $NN(^{1}S_{0})$

 $NN(^{3}S_{1})$

With larger errors, disagreement also exists.

In addition, we may have

Sink 2-baryon operator dependence of plateaux

$$G_{\Xi\Xi}(t) = \sum_{\mathbf{x}, \mathbf{y}} g(|\mathbf{x} - \mathbf{y}|) \langle \Xi(\mathbf{x}, t) \Xi(\mathbf{y}, t) \mathcal{J}_{\Xi\Xi}(t_0) \rangle$$
$$g(r) = 1 : \text{ standrad sink operator}$$

 $g(r) = 1 + A \exp(-Br)$: generalized sink operator

The true plateau must NOT dependent on g(r).

Smeared source

Wall source

- smeared source is very sensitive to g(r).
 - Sometimes deeper and more stable.
 - one can produce an arbitrary value (within a certain range) by g(r).
- Wall source is insensitive to g(r).

- Dangers of fake plateaux exit in principle for the direct method.
- Problem becomes manifest in the strong source/sink operator dependences of plateau values in YIKU 2012.
- Are there any symptoms in other results ?
 - Study of source dependences requires additional simulations.
 - need simpler and easier check

III. Sanity check

- Manifestation of the problem II -

S. Aoki, T. Doi, T. Iritani, PoS(Lattice2016) 109 (aiXiv:1610:09763)

Finite volume formula

ERE at physical pion mass

Instead, a behavior shown below indicates the problem in lattice QCD data.

$$1/a \simeq -\infty, \quad r \simeq -\infty$$

YIKU2012 Yamazaki et al. PRD86(2012)074514

 $m_{\pi} = 0.51 \text{ GeV}, L = 2.9 - 5.8 \text{ fm}$

 ΔE is almost independent on L, while it is shallow bound state.

"Not Sanity"

IV. Conclusion

The direct method gives no reliable result for two(or more)-baryon systems so far, since systematic errors due to contaminations from excited (elastic) states are not under control. Do not be misled.

Check Table for NN

HALQCD potential method ?

T. Doi's talk on Nov. 23

Potentials at physical pion

$\Omega\Omega$ potential

S. Gongyo

K-computer [10PFlops]

Strong attraction Vicinity of bound/unbound (~ unitary limit)

The most strange dibaryon ?

$NN(^{3}S_{1})$ tensor potential

Qualitatively similar tail to one pion exchange potential (OPEP) reduction of errors is definitely needed.

$N\Xi$ potentials

$N\Xi(I = 0, {}^{3}S_{1})$ $N\Xi - \Lambda\Sigma(I = 1, {}^{1}S_{0})$ $N\Xi - \Lambda\Sigma - \Sigma\Sigma(I = 1, {}^{3}S_{1})$ 100 150 t11 50 preliminary 80 preliminary 100 60 00 50 40 0 50 preliminary 20 -50 0 41 11 0 100 -20 -40 -50 L 150 1.5 2.5 0 0.5 2 1.5 1 2.5 0.5 1 2 3 1.5 2.5 0 0.5 2 3 r[fm] r[fm] r[fm]

Is the interaction net attractive ? Stay tuned !

K. Sasaki

Numerator and denominator

Smeared source looks better for the single baryon, but it still keeps changing in the fine scale.

Method relies on cancellation of systematics

Numerator and denominator

Smeared source looks better for the single baryon but it still keeps changing in the fine scale.

Method relies on cancellation of systematics

