Baryon-Baryon Interactions from Lattice QCD

Takumi Doi (Nishina Center, RIKEN)

The Odyssey from Quarks to Universe

<u>The Odyssey from unphysical</u> <u>to physical quark masses</u>

Hadrons to Atomic nuclei from Lattice QCD (HAL QCD Collaboration)

- S. Aoki, D. Kawai,
- T. Miyamato, K. Sasaki (YITP)
- T. Doi, T. Hatsuda, T. Iritani (RIKEN)
- F. Etminan (Univ. of Birjand)
- S. Gongyo (Univ. of Tours)
- Y. Ikeda, N. Ishii, K. Murano (RCNP)
- T. Inoue (Nihon Univ.)
- H. Nemura (Univ. of Tsukuba)

「20XX年宇宙の旅」 from Quarks to Universe

Various Theoretical methods

Outline

Introduction

- Theoretical framework
 - Direct method (Luscher's method)
 - HAL QCD method
- Challenges for multi-body systems on the lattice
- Reliability test of LQCD methods
- Results at heavy quark masses
- Results at physical quark masses
- Summary / Prospects

Interactions on the Lattice

- Direct method (Luscher's method)
 - Phase shift & B.E. from temporal correlation in finite V

M.Luscher, CMP104(1986)177 CMP105(1986)153 NPB354(1991)531

HAL QCD method

- "Potential" from spacial (& temporal) correlation
- Phase shift & B.E. by solving Schrodinger eq in infinite V

Ishii-Aoki-Hatsuda, PRL99(2007)022001, PTP123(2010)89 HAL QCD Coll., PTEP2012(2012)01A105

Luscher's formula: Scatterings on the lattice

• Consider Schrodinger eq at asymptotic region

 $(\nabla^2 + k^2)\psi_k(r) = mV_k(r)\psi_k(r)$ $V_k(r) = 0 \text{ for } r > R$

- (periodic) Boundary Condition in finite V
 → constraint on energies of the system
- Energy E ← → phase shift (at E)

$$k \cot \delta_{\mathbf{E}} = \frac{2}{\sqrt{\pi L}} Z_{00}(1; q^2), \quad q = \frac{kL}{2\pi}, \quad E = 2\sqrt{m^2 + k^2}$$

Large V: $\Delta E = E - 2m = -\frac{4\pi \mathbf{a}}{mL^3} \left[1 + c_1 \frac{a}{L} + c_2 \left(\frac{a}{L}\right)^2 + \mathcal{O}(\frac{1}{L^3}) \right]$

- Calculate the energy spectrum of NN on (finite V) lattice
 - Temporal correlation in Euclidean time → energy

 $G(t) = \langle 0 | \mathcal{O}(t) \overline{\mathcal{O}}(0) | 0 | \rangle = \sum_{n} A_{n} e^{-\mathbf{E}_{n} t} \to A_{0} e^{-\mathbf{E}_{0} t} \quad (t \to \infty)$

[HAL QCD method]

- "Potential" defined through phase shifts (S-matrix)
- Nambu-Bethe-Salpeter (NBS) wave function

 $\psi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) | N(k) N(-k); W \rangle$

$$(\nabla^2 + k^2)\psi(\vec{r}) = 0, \quad r > R \qquad W = 2\sqrt{m^2 + k^2}$$

– Wave function $\leftarrow \rightarrow$ phase shifts

$$\psi(r) \simeq A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr}$$

(below inelastic threshold)

Extended to multi-particle systems

 M.Luscher, NPB354(1991)531
 Ishizuka, Pos LAT2009 (2009) 119

 C.-J.Lin et al., NPB619(2001)467
 Aoki-Hatsuda-Ishii PTP123(2010)89

 CP-PACS Coll., PRD71(2005)094504
 S.Aoki et al., PRD88(2013)014036

Asymptotic form of BS wave function

(44)

For simplicity, we consider BS wave function of two pions

$$\begin{split} \psi_{\vec{q}}(\vec{x}) &= \left\langle 0 \middle| N(\vec{x}) N(\vec{0}) \middle| N(\vec{q}) N(-\vec{q}), in \right\rangle \\ &= \int \frac{d^3 p}{(2\pi)^3 2E_N(\vec{p})} \left\langle 0 \middle| N(\vec{x}) \middle| N(\vec{p}) \right\rangle \left\langle N(\vec{p}) \middle| N(\vec{0}) \middle| N(\vec{q}) N(-\vec{q}), in \right\rangle + I(\vec{x}) \\ &= \int \frac{d^3 p}{(2\pi)^3 2E_N(\vec{p})} \left\langle 0 \middle| N(\vec{x}) \middle| N(\vec{p}) \right\rangle \left\langle N(\vec{p}) \middle| N(\vec{0}) \middle| N(\vec{q}) N(-\vec{q}), in \right\rangle + I(\vec{x}) \\ &= \int \frac{d^3 p}{(2\pi)^3 2E_N(\vec{p})} \left\langle 0 \middle| N(\vec{x}) \middle| N(\vec{p}) \right\rangle \left\langle N(\vec{p}) \middle| N(\vec{0}) \middle| N(\vec{q}) N(-\vec{q}), in \right\rangle + I(\vec{x}) \\ &= Z \left(e^{i\vec{q}\cdot\vec{x}} + \frac{1}{(2\pi)^3} \int \frac{d^3 p}{2E_N(\vec{p})} \frac{I(\vec{p};\vec{q})}{4E_N(\vec{q}) \cdot (E_N(\vec{p}) - E_N(\vec{q}) - i\varepsilon)} e^{i\vec{p}\cdot\vec{x}} \right) \\ &= Integral is dominated by the on-shell contribution $E_N(\vec{p}) \approx E_N(\vec{q}) \\ &= Z \left(e^{i\vec{q}\cdot\vec{x}} + \frac{1}{2i} \left(e^{2i\delta_0(s)} - 1 \right) \frac{e^{iqr}}{qr} \right) + \cdots \\ &= Z \left(e^{i\vec{q}\cdot\vec{x}} + \frac{1}{2i} \left(e^{2i\delta_0(s)} - 1 \right) \frac{e^{iqr}}{qr} \right) + \cdots \end{split}$$$

The asymptotic form

$$\psi_{\tilde{q}}(\vec{x}) = Ze^{i\delta_0(s)} \frac{\sin(qr + \delta_0(s))}{qr} + \dots \text{ (s-wave)}$$
This is analogous to a non-rela, wave function

"Potential" as a representation of S-matrix

Consider the wave function at "interacting region"

 $(\nabla^2 + k^2)\psi(\mathbf{r}) = m \int d\mathbf{r'} U(\mathbf{r}, \mathbf{r'})\psi(\mathbf{r'}), \quad \mathbf{r} < R$

Probe interactions in "direct" way

- U(r,r'): faithful to the phase shift by construction
 - U(r,r'): NOT an observable, but well defined
 - U(r,r'): E-independent, while non-local in general

Proof of Existence of E-independent potential

 $V_W(r)\psi_W(r) = (E_W - H_0)\psi_W(r)$ [START] <u>local</u> but <u>E-dep</u> pot. (L³xL³ dof) -

• We consider the linear-indep wave functions and define

$$\mathcal{N}_{W_1W_2} = \int dm{r} \overline{\psi_{W_1}(m{r})} \psi_{W_2}(m{r})$$

• We define the non-local potential

$$U(\mathbf{r},\mathbf{r}') = \sum_{W_1,W_2}^{W_{\rm th}} (E_{W_1} - H_0) \psi_{W_1}(\mathbf{r}) \mathcal{N}_{W_1W_2}^{-1} \overline{\psi_{W_2}(\mathbf{r}')}$$

• The above potential trivially satisfy Schrodinger eq.

[GOAL] non-local but E-indep pot. (L³xL³ dof)

c.f. Krolikowski-Rzewuski, Nuovo Cimento, 4, 1212 (1956)

"Potential" as a representation of S-matrix

Consider the wave function at "interacting region"

 $(\nabla^2 + k^2)\psi(\mathbf{r}) = m \int d\mathbf{r'} U(\mathbf{r}, \mathbf{r'})\psi(\mathbf{r'}), \quad \mathbf{r} < R$

Probe interactions in "direct" way

- U(r,r'): faithful to the phase shift by construction
 - U(r,r'): <u>NOT</u> an observable, but well defined
 - U(r,r'): E-independent, while non-local in general
- Phase shifts at <u>all E</u> (below inelastic threshold) obtained by solving Scrodinger eq in infinite V

$$U(\vec{r}, \vec{r'}) = V_c(r) + S_{12}V_T(r) + \vec{L} \cdot \vec{S}V_{LS}(r) + \mathcal{O}(\nabla^2)$$

LO LO NLO NNLO

Check on convergence: K.Murano et al., PTP125(2011)1225

Control the E-dependence of phase shifts

HAL QCD method

Lattice QCD

Scattering Exp.

Lat Nuclear Force **NBS** wave func. 100 600 1.2 500 NN wave function $\phi(r)$ 1.0 50 V_C(r) [MeV] 400 0.8 φ(x,y,z=0;¹S_n) 300 1.5 c 0.6 200 1.0 0.4 0.5 -50 100 0.0 0.5 1.0 1.5 2.0 0.2 v[fm] 0 0.0 1.0 1.5 0.0 0.5 2.0 0.5 1.0 1.5 2.0 0.0 r [fm] r [fm] $\left(k^2/m_N - H_0\right)\psi(\vec{r}) = \int d\vec{r}' U(\vec{r},\vec{r}')\psi(\vec{r}')$ $\langle 0|N(\vec{r})N(\vec{0})|N(\vec{k})N(-\vec{k}),in \rangle$ $\psi_{NBS}(\vec{r})$ _ $A_k \sin(kr - l\pi/2 + \delta_l(k))/(kr)$ \sim E-indep (& non-local) Potential: (at asymptotic region) Faithful to phase shifts Analog to ... **Phase shifts Phen. Potential** 300 ${}^{1}S_{0}$

virtual state

mid-range attraction

200

 $T_{\rm lab}$ [MeV]

short-range

300

400

repulsion

60

40

20

0

-20 0

A few remarks on the Lattice Potential

- Potential is NOT an observable and is NOT unique: They are, however, phase-shift equivalent potentials
 Choosing the pot. ←→ choosing the "scheme" (sink op.)
- Potential approach has some benefits:
 - Convenient to understand physics
 - Many body systems (sign problem partially avoided)
 - Finite V artifact better under control
 - Excited states better under control
 - G.S. saturation NOT necessary
 - Coupled Channel Systems

Crucial for multi-body on Lat

<u>Outline</u>

- Introduction
- Theoretical framework
- Challenges for multi-body systems on the lattice
 - Signal/Noise Issue
 - Coupled Channel Systems
 - Computational Challenge
- Reliability test of LQCD methods
- Results at heavy quark masses
- Results at physical quark masses
- Summary / Prospects

Challenges in multi-baryons on the lattice

• Signal / Noise issue

Parisi, Lepage (1989)

– G.S. saturation by t $\rightarrow \infty$ required in LQCD

 $G(r,t) = \langle 0 | \mathcal{O}(r,t) \overline{\mathcal{O}}(0) | 0 | \rangle = \sum_{n} \alpha_{n} \psi_{n}(r) e^{-E_{n}t} \xrightarrow[t \to \infty]{} \alpha_{0} \psi_{0}(r) e^{-E_{0}t}$

(for mass number = A) 17

Challenges in multi-baryons on the lattice

Excitation energy ~ binding energy or finite V effect $E_1 - E_0 \simeq \frac{\vec{p}^2}{m_N} \simeq \frac{1}{m_N} \frac{(2\pi)^2}{L^2}$ (very small) $M\pi = 0.5 \text{ GeV}$ L=3fm L = 3 fm L = 6 fm L = 8 fm $L = \infty$ $M\pi = 0.3 \text{ GeV}$ Inelastic L=6fm ΝΝπ **Elastic** NN **Physical M**π (simple) $S/N \propto$ 10⁻⁴ **10**-13 10-25 L=8fm System w/o Gap

New Challenge for multi-body systems

(For both of Direct method / (old) HAL method)

Time-dependent HAL method

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437

E-indep of potential U(r,r') → (excited) scatt states share the same U(r,r') <u>They are not contaminations, but signals</u>

Original (t-indep) HAL method

$$G_{NN}(\vec{r},t) = \langle 0|N(\vec{r},t)N(\vec{0},t)\overline{\mathcal{J}_{Src}(t_0)}|0\rangle$$

$$R(r,t) \equiv G_{NN}(r,t)/G_N(t)^2 = \sum_i A_{W_i}\psi_{W_i}(r)e^{-(W_i-2m)t}$$

$$\int dr'U(r,r')\psi_{W_0}(r') = (E_{W_0} - H_0)\psi_{W_0}(r)$$

$$\int dr'U(r,r')\psi_{W_1}(r') = (E_{W_1} - H_0)\psi_{W_1}(r)$$

New t-dep HAL method

All equations can be combined as

$$\int d\mathbf{r}' U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t) = \left(-\frac{\partial}{\partial t} + \frac{1}{4m} \frac{\partial^2}{\partial t^2} - H_0 \right) R(\mathbf{r}, t)$$

G.S. saturation \rightarrow "Elastic state" saturation

System w/ Gap

Coupled Channel systems

(beyond inelastic threshold)

- Essential in many interesting physics
 - Hyperon Forces (e.g., H-dibaryon ($\Lambda\Lambda$ -N Ξ - $\Sigma\Sigma$))
 - Exotic mesons, Resonances, etc. (e.g., Zc(3900))

Computational Challenge

Enormous comput. cost for multi-baryon correlators

Wick contraction (permutations)

 $\sim [\left(rac{3}{2}A
ight)!]^2$ (A: mass number)

– color/spinor contractions

$$\sim 6^A \cdot 4^A$$
 or $6^A \cdot 2^A$

See also T. Yamazaki et al., PRD81(2010)111504

- Unified Contraction Algorithm (UCA)

TD, M.Endres, CPC184(2013)117

- A novel method which unifies two contractions

 $\Pi^{2N} \simeq \langle qqqqqq(t)\bar{q}(\xi_1')\bar{q}(\xi_2')\bar{q}(\xi_3')\bar{q}(\xi_3')\bar{q}(\xi_5')\bar{q}(\xi_6')(t_0)\rangle \times \operatorname{Coeff}^{2N}(\xi_1',\cdots,\xi_6')$

21

Permuted Sum

Drastic Speedup

imes 192 for ${}^{3}\mathrm{H}/{}^{3}\mathrm{He}$, imes 20736 for ${}^{4}\mathrm{He}$, $imes 10^{11}$ for ${}^{8}\mathrm{Be}$ (x add'l. speedup)

See also subsequent works: Detmold et al., PRD87(2013)114512 Gunther et al., PRD87(2013)094513

Sum over color/spinor unified list

Outline

- Introduction
- Theoretical framework
- Challenges for multi-body systems on the lattice
 - Signal/Noise Issue Time-dependent HAL method
 - Coupled Channel Systems → Coupled channel HAL potential
 - Computational Challenge

- Unified Contraction Algorithm

Reliability test of LQCD methods

- Direct method & HAL method: Comparative study
- Results at heavy quark masses
- Results at physical quark masses
- Summary / Prospects

➔ Talk by S. Aoki

Direct method vs HAL method

Reviewed in T.D. PoS LAT2012,009 (+ updates)

HAL method (HAL) : unbound Direct method (PACS-CS (Yamazaki et al.)/NPL/CalLat): bound

c.f. I=2 pipi : Direct & HAL methods agree well Kurth et al., JHEP1312(2013)015

Reliability Test of LQCD methods

T. Iritani et al. (HAL), JHEP1610(2016)101

• Employ the same config used in previous Direct method study

YIKU2012 = T. Yamazaki et al. PRD86(2012)074514

High statistics (e.g., 48⁴ smeared: x8 #stat of YIKU2012)

- Both of wall & smeared src setup
 - smeared → same as YIKU2012

w/ same center

- Nf=2+1 clover LQCD
 - $-m\pi = 0.51 \text{GeV}, m_N = 1.32 \text{GeV}, m_\Xi = 1.46 \text{GeV}, 1/a=2.2 \text{GeV} (a=0.09 \text{fm})$
 - L=2.9, 3.6, 4.3, 5.8 fm $(32^3x48, 40^3x48, 48^3x48, 64^3x64)$
 - NN $({}^{1}S_{0})$, NN $({}^{3}S_{1})$ & $\Xi\Xi ({}^{1}S_{0})$, $\Xi\Xi ({}^{3}S_{1})$
 - N.B. $\Xi\Xi$ (¹S₀) ~ flavor SU(3) partner of NN (¹S₀), but much better S/N

Check by source op. dependence

• Examine the consistency between smeared & wall source (L=4.3fm)

Inconsistent "signal" (red (wall) vs blue (smeared))
→ cannot judge which (or neither) is reliable

are consistent

V^{LO}(r) from wall+smeared

 $\Xi\Xi ({}^{1}S_{0})$

Check by sink op. dependence (for direct method)

Generalized Direct method (by generalized sink projection)

$$\tilde{R}^{(f)}(t) = \sum_{\vec{r}} f(\vec{r}) R(\vec{r}, t) = \sum_{\vec{r}} f(\vec{r}) \sum_{\vec{x}} \langle 0|B(\vec{r} + \vec{x}, t)B(\vec{x}, t)\overline{\mathcal{J}}_{src}(0)|0\rangle / \{G_B(t)\}^2$$

c.f. standard Direct method $\boldsymbol{\leftarrow} \boldsymbol{\rightarrow}$ f(r)=1

"Sanity Check" for results from direct method

Aoki-Doi-Iritani, arXiv:1610.09763

ERE:
$$k \cot \delta(k) = \frac{1}{\mathbf{a}} + \frac{1}{2} \mathbf{r} k^2 + \cdots$$

If we examine the data from

T. Yamazaki et al. PRD86(2012)074514

singular behaviors

 $1/a \simeq -\infty$

Manifestation of problem in the direct method

Check Table for NN (direct method)

Anatomy of the direct method from HAL QCD potential

Understand the origin of "fake plateaux"

Decompose NBS correlator to each eigenstates

Understand the origin of "fake plateaux"

We are now ready to "predict" the behavior of m(eff) of ΔE at any "t"

<u>Understand the origin of "fake plateaux"</u>

We are now ready to "predict" the behavior of m(eff) of ΔE at any "t"

Direct method "educated by HAL method"

Generalized Direct method (by generalized sink projection)

 $\tilde{R}^{(f)}(t) = \sum_{\vec{r}} f(\vec{r}) R(\vec{r},t) = \sum_{\vec{r}} f(\vec{r}) \sum_{\vec{x}} \langle 0|B(\vec{r}+\vec{x},t)B(\vec{x},t)\overline{\mathcal{J}_{\mathsf{SrC}}(0)}|0\rangle / \{G_B(t)\}^2$

f(r) ← eigen-wave func from HAL potential at finite V

∆E : Direct (wall/smeared) = Potential (wall/smeared)

Direct method has (useful) predictive power postdictive power Variational method could be helpful for direct method

<u>Outline</u>

- Introduction
- Theoretical framework
- Challenges for multi-body systems on the lattice
- Reliability test of LQCD methods
- Results at heavy quark masses w/ <u>HAL QCD method</u>
- Results at physical quark masses
- Summary / Prospects

NN-forces (P=(+) channel)

(mπ=0.41-0.70 GeV)

Hyperon Forces

- H. Nemura et al., PLB673(2009)136
- K. Sasaki et al., PTEP2015(2015)113B01

SU(3) symmetric point:

SU(3) study

BB potentials

a=0.12 fm, L=3.9 fm,m(PS) = 0.47 - 1.2 GeV

T.Inoue et al. (HAL.), NPA881(2012)28

From LQCD to Nuclei / Neutron Star

<u>NN-forces in P=(-) channel</u> ($m\pi=1.1 \text{ GeV}$)

3N-forces (3NF)

 $(Nf=2, m\pi=0.76-1.1 \text{ GeV})$

T.D. et al. (HAL QCD Coll.) PTP127(2012)723

+ t-dep method updates etc.

Unified Contraction Algorithm (UCA) is crucial (x192 speedup) How about other geometries ? How about YNN, YYN, YYY ? How about lighter quark masses ?

<u>Nf=2, mπ=0.76-1.1 GeV</u>

<u>Nf=2+1, m π =0.51 GeV</u>

Kernel: ~50% efficiency achieved !

<u>Outline</u>

- Introduction
- Theoretical framework
- Challenges for multi-body systems on the lattice
- Reliability test of LQCD methods
- Results at heavy quark masses
- Results at (almost) physical quark masses
 - Nuclear forces and Hyperon forces
 - Impact on dense matter
- Summary / Prospects

- <u>Baryon Forces from LQCD</u>
- Exponentially better S/N
- <u>Coupled channel systems</u>

Ishii-Aoki-Hatsuda (2007)

Ishii et al. (2012)

Aoki et al. (2011,13)

[Theory] = HAL QCD method

Baryon Interactions at Physical Point

[Hardware]

- = K-computer [10PFlops]
 - + FX100 [1PFlops] @ RIKEN + HA-PACS [1PFlops] @ Tsukuba
- HPCI Field 5 "Origin of Matter and Universe"

[Software]

- = Unified Contraction Algorithm
- Exponential speedup Doi-Endres (2013)

 - $^{3}\mathrm{H}/^{3}\mathrm{He}$: $\times 192$
 - ${}^{4}\text{He}$: $\times 20736$
 - ⁸Be : $\times 10^{11}$

Setup of Lattice QCD

• Nf = 2+1 full QCD

- Clover fermion + Iwasaki gauge action
- Non-perturbatively O(a)-improved
- APE-Stout smearing (α =0.1, n_{stout}=6)
- m(pi) ~= 145 MeV, m(K) ~= 525 MeV
- #traj ~= 2000 generated

K.I. Ishikawa et al., PoS LAT2015, 075

Mπ=145MeV L=8fm

96⁴ box (a~= 0.085fm)

• Measurement

- Wall source w/ Coulomb gauge
- Efficient implementation of UCA
- Block solver for multiple RHS
- K-computer @ 2048 node (x 8core/node)
 - ~25% efficiency (~65 TFlops sustained)
- Calc to increase #stat in progress
- All results preliminary

Target of Interactions

NN/YN/YY for central/tensor forces in P=(+) (S, D-waves)

Hyperon in neutron star and EoS? Exotic states?

Hyperon forces provide precious predictions

[S. Gongyo / K. Sasaki]

t = 18 : ~0.2-0.3% sys error

$\Xi\Xi$ system (S=-4)

t = 14-18 : ~0.3-1% sys error

(400conf x 4rot x 48src)

(2-gauss + 2-OBEP fit) (400conf x 4rot x 48src)

(t-dependence will be checked again w/ larger #stat)

<u>S= -3 systems</u>

- <u>ΞΣ (I=3/2)</u>
 - ${}^{1}S_{0} \sim 27$ -plet $\Leftrightarrow NN({}^{1}S_{0}) + SU(3)$ breaking

•
$${}^{3}S_{1} - {}^{3}D_{1} \sim 10^{*}$$
-plet
 $\Leftrightarrow NN({}^{3}S_{1} - {}^{3}D_{1}) + SU(3)$ breaking

- $\Xi \Lambda \Xi \Sigma$ (I=1/2) : coupled channel
 - ¹S₀ ~ 27-plet & 8s-plet
 - ${}^{3}S_{1} {}^{3}D_{1} \sim 10$ -plet & 8a-plet

<u>ΞΣ(I=3/2, spin triplet)</u>

<u>S= -2 systems</u>

- $\Lambda\Lambda$ -N Ξ - $\Sigma\Sigma$ ($^{1}S_{0}$)
 - H-dibaryon channel
- NE interactions
 - **Ξ-hypernuclei**
 - Ξ in neutron star ?
 - ... and many more interactions !

<u>S= -1 systems</u>

 \leftarrow strangeness nuclear physics (Λ -hypernuclei @ J-PARC)

 Λ should (?) appear in the core of Neutron Star

←→ Huge impact on EoS of high dense matter

- $\Lambda N \Sigma N$ (I=1/2) : coupled channel
 - ¹S₀ ~ 27-plet & 8s-plet
 - ${}^{3}S_{1} {}^{3}D_{1} \sim 10^{*}$ -plet & 8a-plet
- <u>ΣN (I=3/2)</u>
 - ${}^{1}S_{0} \sim 27$ -plet $\Leftrightarrow NN({}^{1}S_{0}) + SU(3)$ breaking
 - ${}^{3}S_{1} {}^{3}D_{1} \sim 10$ -plet

⁽²⁰⁰conf x 4rot x 52src)

⁽²⁰⁰conf x 4rot x 52src)

<u>NN system (S = 0)</u>

Impact on dense matter

S=-2 interactions suitable to grasp whole NN/YN/YY interactions

(off-diagonal component is small)

[K. Sasaki] 63

S=-2 interactions suitable to grasp whole NN/YN/YY interactions

We calculate single-particle energy of hyperon in nuclear matter w/ LQCD baryon forces

We fit by

(off-diagonal component neglected)

$$V(r) = a_1 e^{-a_2 r^2} + a_3 e^{-a_4 r^2} + a_5 \left[\left(1 - e^{-a_6 r^2} \right) \frac{e^{-a_7 r}}{r} \right]^2$$
(central)
$$V(r) = a_1 \left(1 - e^{-a_2 r^2} \right)^2 \left(1 + \frac{3}{a_3 r} + \frac{3}{(a_3 r)^2} \right) \frac{e^{-a_3 r}}{r} + a_4 \left(1 - e^{-a_5 r^2} \right)^2 \left(1 + \frac{3}{a_6 r} + \frac{3}{(a_6 r)^2} \right) \frac{e^{-a_6 r}}{r}$$
(tensor)

Brueckner-Hartree-Fock LOBT

Hyperon single-particle potential

M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. C58, 3688 (1998)

• YN G-matrix using $V_{S=-1}^{LQCD}$, $M_{N,Y}^{Phys}$, $U_{n,p}^{AV18,BHF}$ and, U_{Y}^{LQCD}

 $Q=0 \begin{pmatrix} G_{(\Lambda n)(\Lambda n)}^{SLJ} & G_{(\Lambda n)(\Sigma^{0}n)} & G_{(\Lambda n)(\Sigma^{0}p)} \\ G_{(\Sigma^{0}n)(\Lambda n)} & G_{(\Sigma^{0}n)(\Sigma^{0}n)} & G_{(\Sigma^{0}n)(\Sigma^{0}p)} \\ G_{(\Sigma^{1}p)(\Lambda n)} & G_{(\Sigma^{1}p)(\Sigma^{0}n)} & G_{(\Sigma^{1}p)(\Sigma^{1}p)} \end{pmatrix} Q=+1 \begin{pmatrix} G_{(\Lambda p)(\Lambda p)}^{SLJ} & G_{(\Lambda p)(\Sigma^{0}p)} & G_{(\Lambda p)(\Sigma^{1}n)} \\ G_{(\Sigma^{1}n)(\Lambda p)} & G_{(\Sigma^{1}n)(\Sigma^{0}p)} & G_{(\Sigma^{1}n)(\Sigma^{1}n)} \end{pmatrix} Q=-1 \quad G_{(\Sigma^{1}n)(\Sigma^{1}n)}^{SLJ} Q=+2 \quad G_{(\Sigma^{1}p)(\Sigma^{1}p)}^{SLJ} Q=+2 \quad G_{(\Sigma^{1}p)(\Sigma^{1}p)}^{SLJ} I7$

Hyperon single-particle potentials

- obtained by using YN,YY forces form QCD.
- Results are compatible with experimental suggestion.

 $\begin{array}{ll} U^{\rm Exp}_{\Lambda}(0)\simeq -\,30\,, & U_{\Xi}(0)^{\rm Exp}\simeq -\,10\,, & U^{\rm Exp}_{\Sigma}(0)\geq +\,20 \quad \mbox{[MeV]} \\ & \mbox{attraction} & \mbox{attraction small} & \mbox{repulsion} \end{array}$

[T. Inoue] 66

Chemical potentials

- Density dependence of chemical pot. of n and Y in PNM. $\mu_n(\rho) = \frac{k_F^2}{2M} + U_n(\rho; k_F), \quad \mu_Y(\rho) = M_Y - M_N + U_Y(\rho; 0)$
- Hyperon appear as $n \rightarrow Y^0$ if $\mu_n > \mu_{Y^0}$

$$nn \rightarrow pY^{-}$$
 if $2\mu_n > \mu_p + \mu_{Y^{-}}$

Hyperon onset (just for a demonstration)

- First, Σ^- appear at 2.9 ρ_0 . Next, Λ appear at 3.3 ρ_0 .
 - NS matter is not PNM especially at high density.
 - We should compare with more sophisticated μ_n and μ_p .
 - P-wave YN force may be important at high density.

• "NSM" is matter w/ n, p, e, μ under β -eq and Q=0.

<u>Summary</u>

- Hadron forces: Bridge between particle/nuclear/astro-physics
- HAL QCD method crucial for a reliable calculation
 - Direct method suffers from excited state contaminations
- The 1st LQCD for Baryon Interactions at ~ phys. point
 - m(pi) ~= 145 MeV, L ~= 8fm, 1/a ~= 2.3GeV
 - Central/Tensor forces for NN/YN/YY in P=(+) channel

Nuclear Physics from LQCD New Era is dawning !

- Prospects
 - Exascale computing Era ~ 2020
 - LS-forces, P=(-) channel, 3-baryon forces, etc., & EoS

