Kaon-Nucleon systems in the Skyrme model

RCNP, Osaka University Takashi Ezoe Atsushi Hosaka

Contents

- 1. Introduction
- 2. Skyrme model
- 3. Method
- 4. Results and discussions
 - 4.1 Bound state
 - 4.2 Phase shift
 - 4.3 Gaussian fit
- 5. Summary

1. Introduction

Introduction

Kaon nucleon systems are very attractive

- Strong attraction between the anti-kaon(K) and the nucleon(N)
 Y. Akaishi and T. Yamazaki, Phys. Rev. C 65 (2002)
- $\overline{K}N$ bound state = $\Lambda(1405)$
- Few body nuclear system with $\overline{K} \rightarrow$ under debate

KN interaction is important

to investigate the few body systems with $\bar{\mathsf{K}}$

Theoretical studies of KN interaction

- Phenomeonlogical approach
- Y. Akaishi and T. Yamazaki, Phys. Rev. C 65 (2002) etc
- Chiral theory: based on a 4-point local interaction
- T. Hyodo and W. Weise, Phys. Rev. **C 77** (2008)
- K. Miyahara and T. Hyodo, Phys. Rev. C 93 (2016) etc

Investigate the KN system in the Skyrme model

where the nucleon is described as a soliton.

T.H.R. Skyrme, Nucl. Phys. **31** (1962);

Proc. Roy. Soc. A 260 (1961)

- Describe the interaction between mesons and baryons by mesons
- Baryon emerges as a soliton of meson fields.

T.H.R. Skyrme, Nucl. Phys. **31** (1962);

Proc. Roy. Soc. A 260 (1961)

- Describe the interaction between mesons and baryons by mesons
- Baryon emerges as a soliton of meson fields.

$$L = \frac{F_{\pi}^{2}}{16} \operatorname{tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + \frac{1}{32e^{2}} \operatorname{tr} \left[\left(\partial_{\mu} U \right) U^{\dagger}, \left(\partial_{\nu} U \right) U^{\dagger} \right]^{2}}{\operatorname{kinetic term}}$$

$$F_{\pi}, e: \text{ parameters}$$

Hedgehog ansatz

 π has three degrees of freedom($\pi^{\,0},\ \pi^{\,+},\ \pi^{\,-}$)

- two of these: the angles of the radial vector, $\theta,\,\varphi$
- the rest: a function depending on r

 \Rightarrow a special configuration called the hedgehog ansatz

Hedgehog ansatz: $U_H = \exp\left[i\boldsymbol{\tau}\cdot\hat{r}F(r)\right]$

8

Quantization

The hedgehog solution is a classical field configuration →without spin or isospin

→become a physical state by quantization

 $U_H(\boldsymbol{x}) \to U_H(t, \boldsymbol{x}) = \boldsymbol{A}(t) \exp\left[i\tau_a \boldsymbol{R}_{ab}(t)\hat{r}_b F(r)\right] \boldsymbol{A}^{\dagger}(t)$ $\boldsymbol{A}(t): 2\times 2 \text{ isospin rotation matrix}$

 $R_{ab}(t)$: 3×3 spatial rotation matrix

<u>Baryon with I = J</u> are generated due to the symmetry

which the hedgehog ansatz has

Quantized Hamiltonian

 $H = M_{sol} + \frac{J(J+1)}{2\Lambda}$ the rotation energy

*M*_{sol}: soliton mass

J: spin or isospin value

 Λ : moment of inertia

3. Method

Method

SU(3) symmetry is broken $\rightarrow m_u = m_d = 0, m_s \neq 0$

Callan-Klebanov approach (CK approach)

- Introduce the kaon as fluctuations around the hedgehog soliton
- Form a bound state of the kaon and the hedgehog soliton
- rotate the system to generate hyperons
- Follow the $1/N_c$ counting rule

C.G. Callan and I. Klebanov, Nucl. Phys. **B 262** (1985)

C .G.Callan, K .Hornbostel and I. Klebanov, Phys. Lett. **B 202** (1988)

11

<u>Our approach</u>

- Rotate the hedgehog soliton to generate the nucleon
- Introduce the kaon as fluctuations around the nucleon
- describe kaon-nucleon systems
- Violate the $1/N_c$ counting rule

Method

SU(3) symmetry is broken $\rightarrow m_u = m_d = 0, m_s \neq 0$

Callan-Klebanov approach (CK approach)

- Introduce the kaon as fluctuations around the hedgehog soliton
- Form a bound state of the kaon and the hedgehog soliton
- rotate the system to generate hyperons
- Follow the $1/N_c$ counting rule
- Projection after variation, The strong coupling

C.G. Callan and I. Klebanov, Nucl. Phys. B 262 (1985)

C .G.Callan, K .Hornbostel and I. Klebanov, Phys. Lett. **B 202** (1988)

Our approach

- Rotate the hedgehog soliton to generate the nucleon
- Introduce the kaon as fluctuations around the nucleon
- describe kaon-nucleon systems
- Violate the $1/N_c$ counting rule
- Variation after projection, The weak coupling

T. Ezoe. and A. Hosaka Phys. Rev. D 94, 034022 (2016)

Lagrangian and ansatz • Extension to the SU(3) Skyrme model $L = \frac{F_{\pi}^{2}}{16} \operatorname{tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + \frac{1}{32e^{2}} \operatorname{tr} \left[\left(\partial_{\mu} U \right) U^{\dagger}, \left(\partial_{\nu} U \right) U^{\dagger} \right]^{2}$

$$= \frac{\pi}{16} \operatorname{tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + \frac{1}{32e^{2}} \operatorname{tr} \left[\left(\partial_{\mu} U \right) U^{\dagger}, \left(\partial_{\nu} U \right) U^{\dagger} \right] + L_{SB} + L_{WZ}$$

 $U = \begin{cases} A(t)\sqrt{U_{\pi}}U_{K}\sqrt{U_{\pi}}A^{\dagger}(t) : \text{Callan-Klebanov ansatz} \\ A(t)\sqrt{U_{\pi}}A^{\dagger}(t)U_{K}A(t)\sqrt{U_{\pi}}A^{\dagger}(t) : \text{Our ansatz} \end{cases}$

$$U_{\pi} = \begin{pmatrix} U_{H} & 0 \\ 0 & 1 \end{pmatrix} \qquad U_{K} = \exp\left[i\frac{2}{F_{\pi}}\lambda_{a}K_{a}\right], \quad a = 3, 4, 5, 6$$

Hedgehog ansatz
(2×2 matrix)
$$\lambda_{a}K_{a} = \sqrt{2}\begin{pmatrix} 0_{2\times2} & K \\ K^{\dagger} & 0 \end{pmatrix} \quad K = \begin{pmatrix} K^{+} \\ K^{0} \end{pmatrix} \quad K^{\dagger} = \begin{pmatrix} \bar{K}^{0} \\ K^{-} \end{pmatrix}$$

Lagrangian and ansatz Extension to the SU(3) Skyrme model $L = \frac{F_{\pi}^2}{16} \operatorname{tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + \frac{1}{32e^2} \operatorname{tr} \left[\left(\partial_{\mu} U \right) U^{\dagger}, \left(\partial_{\nu} U \right) U^{\dagger} \right]^2$ $+L_{SB}+L_{WZ}$ Ansatz -the kaon around the hedgehog soliton $U = \begin{cases} A(t)\sqrt{U_{\pi}}U_{K}\sqrt{U_{\pi}}A^{\dagger}(t): \text{ Callan-Klebanov ansatz} \\ A(t)\sqrt{U_{\pi}}A^{\dagger}(t)U_{K}A(t)\sqrt{U_{\pi}}A^{\dagger}(t): \text{ Our ansatz} \end{cases}$ the kaon around the rotating hedgehog soliton

Derivation 1

Substitute our ansatz for the Lagrangian
 Ansatz

$$U = A(t)\sqrt{U_{\pi}}A^{\dagger}(t)U_{K}A(t)\sqrt{U_{\pi}}A^{\dagger}(t)$$
$$U_{K} = \exp\left[i\frac{2}{F_{\pi}}\lambda_{a}K_{a}\right], \quad a = 3, 4, 5, 6$$
$$U_{\pi} = \begin{pmatrix}U_{H} & 0\\0 & 1\end{pmatrix}$$
$$\lambda_{a}K_{a} = \sqrt{2}\begin{pmatrix}0_{2\times 2} & K\\K^{\dagger} & 0\end{pmatrix} \quad K = \begin{pmatrix}K^{+}\\K^{0}\end{pmatrix} \quad K^{\dagger} = \begin{pmatrix}\bar{K}^{0}\\K^{-}\end{pmatrix}$$

Lagrangian

$$L = \frac{F_{\pi}^{2}}{16} \operatorname{tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + \frac{1}{32e^{2}} \operatorname{tr} \left[\left(\partial_{\mu} U \right) U^{\dagger}, \left(\partial_{\nu} U \right) U^{\dagger} \right]^{2} + L_{SB} + L_{WZ}$$

• Expand U_K up to second order of the kaon field K

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \displaystyle {\rm Dbtaining}\ {\rm Lagrangian} \\ \displaystyle {\rm L}={\rm L}_{SU(2)}+{\rm L}_{KN} \\ \displaystyle {\rm L}_{SU(2)}=\frac{1}{16}F_{\pi}{}^{2}{\rm tr}\left[\partial_{\mu}\tilde{U}^{\dagger}\partial^{\mu}\tilde{U}\right]+\frac{1}{32e^{2}}{\rm tr}\left[\partial_{\mu}\tilde{U}\tilde{U}^{\dagger},\partial_{\nu}\tilde{U}\tilde{U}^{\dagger}\right]^{2} \\ \displaystyle {\rm L}_{KN} & = & \left(D_{\mu}K\right)^{\dagger}D^{\mu}K-K^{\dagger}a_{\mu}^{\dagger}a^{\mu}K-m_{K}^{2}K^{\dagger}K \\ & +\frac{1}{(eF_{\pi})^{2}}\left\{-K^{\dagger}K{\rm tr}\left[\partial_{\mu}\tilde{U}\tilde{U}^{\dagger},\partial_{\nu}\tilde{U}\tilde{U}^{\dagger}\right]^{2}-2\left(D_{\mu}K\right)^{\dagger}D_{\nu}K{\rm tr}\left(a^{\mu}a^{\nu}\right) \\ & -\frac{1}{2}\left(D_{\mu}K\right)^{\dagger}D^{\mu}K{\rm tr}\left(\partial_{\nu}\tilde{U}^{\dagger}\partial^{\nu}\tilde{U}\right)+6\left(D_{\nu}K\right)^{\dagger}\left[a^{\nu},a^{\mu}\right]D_{\mu}K\right\} \\ & +\frac{3i}{F_{\pi}^{2}}B^{\mu}\left[\left(D_{\mu}K\right)^{\dagger}K-K^{\dagger}\left(D_{\mu}K\right)\right] \\ \\ \tilde{U}=A(t)U_{H}A^{\dagger}(t), \quad \tilde{\xi}=A(t)\sqrt{U_{H}}A^{\dagger}(t) \qquad D_{\mu}K=\partial_{\mu}K+v_{\mu}K \\ v_{\mu}=\frac{1}{2}\left(\tilde{\xi}^{\dagger}\partial_{\mu}\tilde{\xi}+\tilde{\xi}\partial_{\mu}\tilde{\xi}^{\dagger}\right) \\ a_{\mu}=\frac{1}{2}\left(\tilde{\xi}^{\dagger}\partial_{\mu}\tilde{\xi}-\tilde{\xi}\partial_{\mu}\tilde{\xi}^{\dagger}\right) \\ B^{\mu}=-\frac{\varepsilon^{\mu\nu\alpha\beta}}{24\pi^{2}}{\rm tr}\left[\left(U_{H}^{\dagger}\partial_{\nu}U_{H}\right)\left(U_{H}^{\dagger}\partial_{\alpha}U_{H}\right)\left(U_{H}^{\dagger}\partial_{\beta}U_{H}\right)\right] \\ & \quad {\rm G. S. Adkins, C. R. Nappi and E. Witten, \\ & \qquad {\rm Nucl. Phys. B}\ \mathbf{228}\ (1983) \end{array}$$

Derivation 2

Decompose the kaon filed

 $\begin{pmatrix} K^+ \\ K^0 \end{pmatrix} = \psi_I K(t, \mathbf{r}) \rightarrow \underbrace{\psi_I \ K(\mathbf{r}) e^{-iEt}}_{\text{Isospin wave function}}$

• Expand the K(r) by the spherical harmonics

$$K(\boldsymbol{r}) = \sum_{l,m} C_{lm\alpha} Y_{lm} \left(\theta, \phi\right) k_l^{\alpha}(r)$$

 $Y_{lm}(\theta, \varphi)$: Spherical harmonics

l : orbital angular momentum

m: the 3rd component of l

 α : the other quantum numbers

Take a variation with respect to the kaon radial function
 ⇒Obtain the equation of motion for the kaon around the nucleon

4. Results and discussions

Equation of motion and potential • Equation of motion(E.o.M)

$$-\frac{1}{r^2}\frac{d}{dr}\left(r^2h(r)\frac{dk_l^{\alpha}\left(r\right)}{dr}\right) - E^2f(r)k_l^{\alpha}\left(r\right) + \left(m_K^2 + V(r)\right)k_l^{\alpha}\left(r\right) = 0$$
:Klein-Gordon like

$$-\frac{1}{m_K + E}\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dk_l^{\alpha}\left(r\right)}{dr}\right) + U(r)k_l^{\alpha}\left(r\right) = \varepsilon k_l^{\alpha}\left(r\right) \qquad :$$
Schrödinger like

$$U(r) = -\frac{1}{m_K + E}\left[\frac{h(r) - 1}{r^2}\frac{d}{dr}\left(r^2\frac{d}{dr}\right) + \frac{dh(r)}{dr}\frac{d}{dr}\right] - \frac{(f(r) - 1)E^2}{m_K + E} + \frac{V(r)}{m_K + E}$$

Equivalent local potential: $\tilde{U}(r) = \frac{U(r) k_l^{\alpha}(r)}{k_l^{\alpha}(r)}$

• Properties of resulting potential U

- 1. Nonlocal and depend on the kaon energy
- Contain isospin dependent and independent central forces and the similar spin-orbit(LS) forces
- 3. A repulsive component is proportional to $1/r^2$ at short distances

82.9

0.59

T. Ezoe. and A. Hosaka Phys. Rev. D 94, 034022 (2016)

Result 1: $\overline{KN}(I = 0, L = 0)$ Bound state

 $\left\langle r_{N}^{2}\right\rangle = \int_{0}^{\infty}dr \ r^{2}\rho_{B}\left(r\right), \quad \rho_{B}\left(r\right) = -\frac{2}{\pi}\sin^{2}FF' \quad \text{G. S. Adkins, C. R. Nappi and E. Witten,} \\ \text{Nucl. Phys. B$ **228** $(1983)}$ $\langle r_K^2 \rangle = \int dV \ r^2 \left[Y_{00} \left(\hat{r} \right) k_0^0 \left(r \right) \right]^2 = \int_0^\infty dr \ r^4 k^2 \left(r \right) \qquad Y_{00} = \frac{1}{\sqrt{4\pi}}$ 2016/11/23 Realistic hadron interactions in QCD@YITP

5.45

129

parameter set B

0.99

Comparisons with the chiral theory

Weinberg-Tomozawa intereaction

$$L_{WT} = \frac{2}{F_{\pi}^2} \left\{ \bar{N} \boldsymbol{I}^N \gamma^{\mu} N \cdot \left(\partial_{\mu} K^{\dagger} \boldsymbol{I}^K K - K^{\dagger} \boldsymbol{I}^K \partial_{\mu} K \right) \right\} \propto \frac{1}{F_{\pi}^2}$$

S. Weinberg, Phys. Rev. Lett. **17** (1966) Y. Tomozawa, Nuovo Cim. A **46** (1966)

The strength of $L_{WT} \propto 1/F_{\pi^2}$

 \rightarrow For F_{π} = 129 MeV and 186 MeV,

 $1/129^2: 1/186^2 \sim 15:7$

• The interaction for $\overline{KN}(I = \theta)$ bound state

$$W \equiv 4\pi \int r^2 dr \tilde{U}(r)$$

$$F_{\pi} [\text{MeV}] = \frac{e}{-W \times 10^5 [1/\text{MeV}^2]}$$

$$129 \quad 5.45 \quad 1.2 \times 4\pi$$

$$186 \quad 5.45 \quad 0.48 \times 4\pi$$

T. Ezoe. and A. Hosaka Phys. Rev. D 94, 034022 (2016)

Result 3: Fitting the potentials

$\tilde{U}\left(r\right) = \tilde{U}_{0}^{c}\left(r\right) + \tilde{U}_{\tau}^{c}\left(r\right)\left(\boldsymbol{I}^{K}\cdot\boldsymbol{I}^{N}\right) + \tilde{U}_{0}^{LS}\left(r\right)\left(\boldsymbol{L}^{K}\cdot\boldsymbol{J}^{N}\right) + \tilde{U}_{\tau}^{LS}\left(r\right)\left(\boldsymbol{L}^{K}\cdot\boldsymbol{J}^{N}\right)\left(\boldsymbol{I}^{K}\cdot\boldsymbol{I}^{N}\right)$

	Isospin	Normal term	Wess-Zumino term
Central	indep.	$u_0^c(N,r) + v_0^c(N,r)E_{kin}$	$u_0^c(WZ,r) + v_0^c(WZ,r)E_{kin}$
		$G_{-2}(r) + G_0(r) + G_2(r)$	$G_{0}\left(r\right)+G_{0}\left(r\right)$
	dep.	$u^c_{\tau}(N,r) + v^c_{\tau}(N,r)E_{kin}$	
		$G_{0}\left(r\right)+G_{2}\left(r\right)$	
LS	indep.	$u_0^{LS}(N,r) + v_0^{LS}(N,r)E_{kin}$	$\left u_0^{LS}(WZ,r) + v_0^{LS}(WZ,r)E_{kin} \right $
		$G_{0}\left(r\right)+G_{0}\left(r\right)$	$G_{0}\left(r\right)+G_{0}\left(r\right)$
	dep.	$u_{\tau}^{LS}(N,r) + v_{\tau}^{LS}(N,r)E_{kin}$	
		$G_{-2}(r) + G_{-2}(r)$	
Centrifugal force		$u_{l}\left(r\right)+v_{l}\left(r\right)E_{kin}$	
		$\propto \left(G_{0}\left(r\right)+G_{0}\left(r\right)\right)/r^{2}$	

$$\begin{split} \tilde{U}(r) &\simeq \tilde{U}(r) + \frac{\partial \tilde{U}(r)}{\partial E_{kin}} E_{kin} \\ &\equiv \underbrace{u(r)}_{\text{fit by Gaussian}} \end{split}$$

$$G_{-2}(r) = C_{-2} \frac{1}{r^2 / R_{-2}^2} \exp\left(-\frac{r^2}{R_{-2}^2}\right)$$
$$G_0(r) = C_0 \exp\left(-\frac{r^2}{R_0^2}\right)$$
$$G_2(r) = C_2 \frac{r^2}{R_2^2} \exp\left(-\frac{r^2}{R_2^2}\right)$$

Fitting parameters(Central terms)

parameter set A: $F_{\pi} = 186$ MeV, e = 4.82

• $\widetilde{U}_0^c(N,r)$

s-wave

	$G_{-2}(r)$	$G_{0}\left(r ight)$	$G_{2}\left(r ight)$
Range [fm]	0.176	0.271	0.393
$u_0^c(N,r)$ [MeV]	2911.49	2545.87	-507.819
$v_{0}^{c}\left(N,r ight) \left[1 ight]$	-1.98786	-5.61873	-4.41952×10^{-1}

p-wave

	$G_{-2}\left(r\right)$	$G_{0}\left(r ight)$	$G_{2}\left(r ight)$
Range [fm]	0.318	0.312	0.320
$u_0^c(N,r)$ [MeV]	-2771.64	1916.04	-411.560
$v_0^c\left(N,r ight)\left[1 ight]$	2.62581	-2.87808	-1.76763

• $\widetilde{U}_{\tau}^{c}(N, r)$

	$G_{0}\left(r ight)$	$G_{2}\left(r ight)$
Range [fm]	0.265	0.524
$u_{\tau}^{c}\left(N,r ight)$ [MeV]	401.337	290.964
$v_{\tau}^{c}\left(N,r ight)\left[1 ight]$	0.405391	0.293903

• $\widetilde{U}_0^c(WZ, r)$

	$G_{0}\left(r ight)$	$G_{0}\left(r ight)$
Range [fm]	0.282	0.404
$u_0^c (WZ, r) [MeV]$	-676.51	-1207.07
$v_0^c\left(WZ,r\right)$ [1]	-3.483	-0.995

Fitting parameters(LS and centrifugal terms)

parameter set A: $F_{\pi} = 186$ MeV, e = 4.82

• $\widetilde{U}_0^{LS}(N, r)$

	$G_{0}\left(r ight)$	$G_{0}\left(r ight)$
Range [fm]	0.483	0.300
$u_0^{LS}\left(N,r\right)$ [MeV]	38.8404	63.4182
$v_0^{LS}\left(N,r ight)\left[1 ight]$	0.392332×10^{-1}	0.630481×10^{-1}

 $\tilde{U}_{\tau}^{LS}(N,r)$

	$G_{-2}\left(r\right)$	$G_{-2}\left(r\right)$
Range [fm]	0.604	0.262
$u_{\tau}^{LS}(N,r)$ [MeV]	-1284.46	-6954.51
$v_{\tau}^{LS}\left(N,r ight)$ [1]	1.29744	7.02476

•
$$\widetilde{U}_0^{LS}(WZ, r)$$

	$-G_{0}\left(r\right)$	$G_{0}\left(r ight)$
Range [fm]	0.377	0.243
$\mid u_0^{LS} \left(WZ, r \right) \left[\text{MeV} \right] \mid$	-363.915	-287.034
$v_0^{LS}\left(WZ,r\right)\left[1\right]$	0.367587	0.289936

<u>*Ũ*</u>*l*(*r*)

	$G_{0}\left(r ight)$	$G_{0}\left(r ight)$
Range [fm]	0.431	0.748
$u_l(r)$ [MeV]	62867.86	7583.59
$v_{l}\left(r ight)\left[1 ight]$	63.5029	7.66019

 $\widetilde{U}_{l}(r) = \frac{l(l+1)}{2m_{K}r^{2}} \left[G_{0}(r) + G_{0}(r)\right] \qquad l: \text{Kaon angular momentum}$

parameter set A: $F_{\pi} = 186$ MeV, e = 4.82

 $\overline{K}N \ (I=0, L=1, J=3/2)$

parameter set A: $F_{\pi} = 186$ MeV, e = 4.82

 \overline{KN} (I = 0, L = 1, J = 3/2)

 $\overline{K}N$ (I = 0, L = 0) bound state

parameter set A: $F_{\pi} = 186$ MeV, e = 4.82

 \overline{KN} (I = 0, L = 1, J = 3/2)

 $\overline{K}N$ (I = 0, L = 0) bound state

 $\alpha \equiv eF_{\pi} \rightarrow \alpha^{A} = 186 \times 4.82, \quad \alpha^{B} = 129 \times 5.45$

Scaling the fitting parameters from set A to set B with the scaling rules

Scaling rule for convergent terms 450 Scaling rule for the profile function Numerical 400 350 π Parameter set A $u_r^c(N,r)$ [MeV] Profile function F(r)Parameter set B 300 250 200 Set B 150 100 Set A 50 0 [⊾] 0 0.5 1.5 2 0 [∟]0 Radial distance r [fm] 3 5 1 4 Radial distance [fm] 0 Numerical -200 Set A Convergent contributions: -400 $\widetilde{U}_{\tau}^{c}(N, r), \ \widetilde{U}_{0}^{LS}(N, r), \ \widetilde{U}_{0}^{c}(WZ, r), \ \widetilde{U}_{0}^{LS}(WZ, r)$ [MeV] -600 -800 Set B 1000 $R^B = \frac{\alpha^A}{\alpha^B} R^A$: Range -1200 -1400 $C_0^B = C_0^A$: Strength for $G_0(r)$ -1600 -1800 $C_2^B = \left(\frac{\alpha^B}{\alpha^A}\right)^2 C_2^A$: Strength for $G_2(r)$ -2000∟ 0 0.5 1.5 2 Radial distance r [fm]

Scaling rule for divergent terms

 $1/r^2$ repulsion does not depend on the scaling for F(r)

 \rightarrow Come from $\partial_i(\exp[i\tau_a r_a F(r)])$ and $\partial_i K(r)$

Divergent contributions: $\tilde{U}_0^c(N, r)$, $\tilde{U}_{\tau}^{LS}(N, r)$, $\tilde{U}_l(r)$

 \rightarrow Make them convergent by multiplying r^2 and divided by r^2 after scaling

		Isospin	Normal term
	Central	indep.	$r^2 \times (u_0^c(N,r) + v_0^c(N,r)E_{kin})$
			$G_{0}\left(r\right)+G_{2}\left(r\right)+G_{4}\left(r\right)$
	LS	dep.	$r^{2} \times \left(u_{\tau}^{LS}(N,r) + v_{\tau}^{LS}(N,r)E_{kin}\right)$
			$G_{0}\left(r\right)+G_{0}\left(r\right)$
	Centrifugal force		$r^{2} \times \left(u_{l}\left(r\right) + v_{l}\left(r\right)E_{kin}\right)$
			$G_{0}\left(r\right)+G_{0}\left(r\right)$
$G_0\left(r\right) = \frac{C_0}{C_0} \exp\left(-\frac{r^2}{R_0^2}\right)$			$R^B = rac{lpha^A}{lpha^B} R^A$
			$C_0^B = C_0^A$
G_2	$(r) = \frac{C_2}{R_2^2} \exp\left(-\frac{r^2}{R_2^2}\right)$	$-\frac{r^2}{R_2^2}$	$C_2^B = \left(\frac{lpha^B}{lpha^A}\right)^2 C_2^A$
G_4	$(r) = \frac{C_4}{R_4^4} \exp\left(-\frac{r^4}{R_4^4}\right) \exp\left(-$	$-rac{r^2}{R_4^2} ight)$	$C_4^B = \left(\frac{lpha^B}{lpha^A}\right)^4 C_4^A$

2016/11/23 Realistic hadron interactions in QCD@YITP

/

parameter set B: $F_{\pi} = 129$ MeV, e = 5.45

 \overline{KN} (I = 0, L = 0) bound state

 \overline{KN} (I = 0, L = 1, J = 3/2)

scattering state

parameter set B: F_{π} = 129 MeV, e = 5.45

 $\overline{K}N \ (I=0, L=1, J=3/2)$

 \overline{KN} (I = 0, L = 0) bound state

parameter set B: $F_{\pi} = 129$ MeV, e = 5.45

 \overline{KN} (I = 0, L = 0) bound state

 \overline{KN} (I = 0, L = 1, J = 3/2)

scattering state

5. Summary

Summaries

Investigate the kaon-nucleon systems

by a modified bound state approach in the Skyrme model

Results

- 1. Properties of the obtained potential
 - a. nonlocal and depends on the kaon energy
 - b. contain central and LS terms with and without isospin dependence
 - c. repulsion proportional to $1/r^2$ for small r
- 2. $\overline{K}N(I=0)$ bound states exist with B.E. of order ten MeV
- 3. Phases as functions of energy reflect the property of the bound state
- 4. Fit the potential by a simple form of the Gaussian type

Future works

- 1. The $\pi \Sigma$ system
- 2. The properties of $\Lambda(1405)$
- 3. few body nuclear system with kaon 2016/11/23 Realistic hadron interactions in QCD@YITP

Thank you for your attention