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The Nobel Prize in Physics 1949

"for his prediction of 
the existence of 
mesons on the basis 
of theoretical work on 
nuclear forces".

Hideki Yukawa 
Yukawa Institute for Theoretical Physics (former 
Research Institute for Fundamental Physics) goes 
back to 1949 when Hideki Yukawa of Kyoto 
University 

The paper was written in 1934 while he was working at Osaka U.

“On the interaction of elementary particles,” PTP17,48





Outline

✤ Introduction 

• Why nuclear force; Current status (of chiral forces) 

• Why  relativistic? atomic/molecular; nuclear; one-baryon 
sector 

✤ Our strategy and some preliminary results  

✤ Summary and outlook



Motivation: why nuclear force



Four (established) forces in nature

Evidence for a Protophobic Fifth Force from 8Be Nuclear Transitions,1604.07411  

http://arxiv.org/abs/arXiv:1604.07411


Strong force

• Strong force: bind quarks 
into hadrons 

• Nuclear force—residual 
strong force: binds 
nucleons into nuclei 

• Underlying theory—QCD

2 quark masses and 1 universal coupling



QCD：Asymptotic freedom

PDG2015



QCD： color confinement

• Free quarks do not exist (color confinement),  
experimentally only hadrons are observed 

• Mismatch of degrees of freedom—
hadronization

Decomposition of 
the proton spin



Why construct nuclear forces?

• Nuclear force: derivative force or residual force 

• In this sense,  similar to intermolecular force, 
but because of confinement and asymptotic 
freedom of QCD, much richer and harder 

                               Fan Wang, Guang-han Wu, Li-jian Teng, J.Terrance Goldman Phys.Rev.Lett. 69 (1992) 2901-2904  

• Constructing a nuclear force is a long-standing 
and interesting subject in nuclear physics; the 
basis of all microscopic (ab initio) nuclear 
structure and reaction theories



“High Precision” Nuclear Force

“On the interaction of elementary particles,” PTP17,48



Major milestones for NN potential 
development ChPT

• 1991/92: Weinberg, NN potential from ChPT 

• 1994/96:  Bira v. Kolck and co-workers, first ChPT based 
NN potential at N2LO using cutoff regularization (r-
space)  

• 1994-1997: 

-  Robilotta and co-workers, 2-pi at N2LO 

-  1997: Kaiser et al., 2-pi at N2LO using HBChPT and DR  

• 2000: Epelbaum et al. (“Bochum-Juelich” group), NN 
potential in momentum space at N2LO (HBChPT, DR) 

• 2003:  

- Robilotta and co-workers 2-pi at N3LO in RBChPT 

- Entem & Machleidt (“Idaho” group), first NN potential 
at N3LO         (HBChPT, DR) 

• 2005: Epelbaum et al. (“Bochum-Juelich” group), NN 
potential at N3LO (HBChPT, SFR) 

• 2015: Epelbaum et al., Entem, et al.,  NN potential at 
N4LO

High 
Precision 
Nuclear  
Force



Estimate of theoretical uncertainties

• E. Epelbaum, H. Krebs, and U.-G. Meissner, Eur. Phys. J. A (2015)51



Hierarchy of Bare Nuclear Force in ChEFT
R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1–75 15

Fig. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid dots, solid squares, and solid
diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are given in the text.

forces (4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF, 4NF are
weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known fact that 2NF� 3NF� 4NF
. . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT development of
the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking about the various pion-exchange
contributions.

4.1. Pion-exchange contributions in ChPT

Based upon the effective pion Lagrangians of Section 2.2, we will now derive the pion-exchange contributions to the NN
interaction order by order.

As noted before, there are infinitely many pion-exchange contributions to the NN interaction and, thus, we need to get
organized. First, we arrange the various pion-exchange contributions according to the number of pions being exchanged
between the two nucleons:

V⇡ = V1⇡ + V2⇡ + V3⇡ + · · · , (4.1)
where the meaning of the subscripts is obvious and the ellipsis represents 4⇡ and higher pion exchanges. Second, for each
of the above terms, we assume a low-momentum expansion:

V1⇡ = V (0)
1⇡ + V (2)

1⇡ + V (3)
1⇡ + V (4)

1⇡ + · · · (4.2)

V2⇡ = V (2)
2⇡ + V (3)

2⇡ + V (4)
2⇡ + · · · (4.3)

V3⇡ = V (4)
3⇡ + · · · , (4.4)

where the superscript denotes the order ⌫ and the ellipses stand for contributions of fifth and higher orders. Due to parity
and time reversal, there are no first order contributions. Moreover, since n pions create L = n � 1 loops, the leading order
for n-pion exchange occurs at ⌫ = 2n � 2 [cf. Eq. (3.5)].

In the following subsections, we will discuss V1⇡ , V2⇡ , and V3⇡ , one by one and order by order.

• E. Epelbaum, H.-W. Hammer, Ulf-G. Meissner, Reviews of Modern Physics 
81(2009)1773

• R. Machleidt and D. R. Entem, Physics Reports 503(2011)1

many body < few body



Nonrelativistic NF from heavy baryon (HB) 
ChEFT

•NN interaction  
-up to NLO U. van Kolck et al., PRL, PRC1992-94; N. Kaiser, NPA1997   

-up to NNLO E. Epelbaum, et al.,NPA2000; U. van Kolck et al.,PRC1994 

-up to N3LO  R. Machleidt et al., PRC2003; E. Epelbaum et al., NPA2005   

-up to N4LO E. Epelbaum et al., PRL2015, D.R. Entem, et al., PRC2015  

-dominant N5LO terms  D.R. Entem, et al., PRC2015  

•3N interaction  
-up to NNLO  U. van Kolck, PRC1994 

-up to N3LO  S. Ishikwas, et al, PRC2007; V. Bernard et al, PRC2007;  

-up to N4LO  H. Krebs, et al., PRC2012-13 

•4N interaction  
-up to N3LO  E. Epelbaum, PLB 2006, EPJA 2007 



Number of parameters in Modern 
Nuclear Forces

ChEFT [5]
PWA93 

[1]
Reid93 

[2]
AV18 

[3]

CD-
Bonn 

[4]
LO NLO NNLO N3LO N4LO

No. of 
LECs

35 50 40 38 2 9 9 24 24

χ2/
datum 1.07 1.03 1.09 1.02 480 63 21 0.7 0.3

[1] V.G.J. Stocks et al., PRC48, 792(1993)—Inspire cited 637 times 
[2] V.G.J. Stocks et al., PRC49, 2950(1994)—Inspire cited 1054 times 
[3] Robert B. Wiringa et al, PRC51, 38(1995)—Inspire cited 1975 times 
[4] R. Machleidt, PRC63,024001(2001)—Inspire cited 1050 times 
[5] PRL 115,122301(2015)—Inspire cited 58

caution about definition of x2



Nuclear Force from Quark-Gluon dofs

N. Ishii et al., PRL99,022001(2007)

Nature Research Highlights 2007

• First qualitative 
nuclear force from 
first principles 

• mπ=461 MeV 
• Quenched

Talks from Takumi Doi, Sinya Aoki, Kenji Sasaki



The ultimate aim:  
nuclear physics as a precision science

for the development 
of multiscale 
models for complex 
chemical systems

Nuclear force+advanced numerical methods 
= 

precision nuclear physics



Two recent examples 
Hoyle state of Carbon



Two recent examples 
alpha-alpha scattering

Nature 16067



Limitations of Current ChPT NN forces

• Not “renormalization group invariant” 

- Sensitive to the UV cutoff, not (nonperturbatively) 
renormalizable 

- Diverse opinion on this issue ( B.W. Long et al.) 

• Based on HBChPT 

- Slow convergence as in the one-baryon sector? 

- Cannot be used directly in covariant calculations. 

• A relativistic nuclear force based on the EOMS 
BChPT more relativistic nuclear studies?

D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk,  Phys. Rev. C92, 064001 (2015). 



Motivation: why relativistic



Importance of Relativity not so much 
recognized

• Two pillars of modern physics:  

✓ Quantum mechanics 

✓ Special (General) relativity, not  

S.L.Glashow, 1988, Interactions, Wamer Books, New York  

Modern elementary-particle physics is founded upon the two pillars of 
quantum mechanics and relativity. ……Thus it is that a satisfactory 
description of the atom can be obtained without Einstein's 
revolutionary theory. 



Facts speak louder than words
Atomic/Molecular systems



Facts speak louder than words
Nuclear systems



• Heavy baryon (HB) ChPT 
- non-relativistic 
- breaks analyticity of loop amplitudes 
- converges slowly (particularly in three-flavor sector) 
- strict PC and simple nonanalytical results 

• Infrared BChPT 
- breaks analyticity of loop amplitudes  
- converges slowly (particularly in three-flavor sector) 
- analytical terms the same as HBChPT 

• Extended-on-mass-shell (EOMS) BChPT 
- satisfies all symmetry and analyticity constraints 
- converges relatively faster--an appealing feature

Facts speak louder than words
One-Baryon-Sector



Some successful applications of covariant 
BChPT (in the three-flavor sector)

Recent developments in SU(3) covariant baryon chiral perturbation theory  
Li-sheng Geng, Front.Phys.(Beijing) 8 (2013) 328-348 

✤ Magnetic moments                              
 PRL101:222002,2008;  PLB676:63,2009;  PRD80:034027,2009 

✤ Masses and sigma terms  
PRD82:074504,2010; PRD84:074024,2011; JHEP12:073,2012;    
PRD 87:074001,2013; PRD89:054034,2014 ; EPJC74:2754,2014 ; 
PRD91:051502,2015  

✤ Vector form factors (couplings) 
PRD79:094022,2009；PRD89:113007,2014  

✤ Axial form factors (couplings)                    
PRD78:014011,2008；PRD90:054502,2014



Towards a relativistic nuclear 
force



Our strategy

• We construct the kernel potentials from the 
covariant  chiral Lagrangians  

• We retain the full form of Dirac spinors

5 LECs



NN force at leading order 

• Feynman diagrams at LO 

• “Covariant power counting”

Contact Potential (CTP) One-Pion Exchange Potential (OPEP)

Expansion parameters:
pseudscalar meson masses or small
three-momenta of nucleons



NN force at leading order 

Explicitly covariant form

Expressed in terms of pauli matrices 

Non-relativistic (static) limit

• all allowed six 
spin operators, 

• potential 
energy 
dependent



NN force at leading order 

Explicitly covariant form

Expressed in terms of pauli matrices and NR wfs

Non-relativistic (static) limit



A hint at a more efficient formulation

A large contribution of the correction terms is  
essential to describe the 1S0 phase shift

J. Soto and J. Tarrus, Phys. Rev. C78, 024003 (2008).

B. Long, Phys. Rev. C88, 014002 (2013). 



The nuclear force is non-perturbative

T
� � � � � �� � � …

Non-perturbative summation of the tree-level potential

3D reduction of the Bethe-Salpeter equation (Kadyshevsky) 

With the implicit mass “on-shell” approximation of the 
potential.



NN force at leading order 

• 5 LECs to fit the np phase shifts of Nijmegen 93

• Cutoff renormalization in solving the scattering eq.



Best fit

L=747 MeV, the minimum of fit-c2=106.90, c2/d.o.f. = 2.89

LECs Values 
[104 GeV-2]

CS 0.1339
CA -0.05477
CV -0.2673
CAV -0.2454
CT -0.06310



A closer look at the partial waves

•Improved description of 1S0 

and 3P0 phase shifts  

•Quantitatively similar with the 

nonrelativistic case for J=1 

partial waves



Relativistic vs. non-relativistic 
Very promising

A more efficient description is achieved

Relativistic Chiral NF Non-relativistic Chiral NF

Chiral order LO LO NLO*

No. of LECs 5 2 9
c2/d.o.f. 2.9 147.9 2.5



BbS vs. Kadeshevsky scattering equation

(almost) Independent 
from 

the scattering equation

BbS(Blankenbecler-Sugar) 



Higher partial waves remain the same



Deuteron Properties and scattering lengths
in reasonable agreement with data



Summary and Outlook
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Summary and Outlook

✤ Nuclear forces based on Chiral EFT have made 
remarkable progress in the past decade.

✤ Covariant descriptions of the one-baryon and nuclear 
systems have been quite successful as well. 

✤ Time is mature to develop a covariant formulation of 
baryon-baryon forces in chiral EFT.

✤ Initial (preliminary) results are very promising.
✤ More is coming. Remain tuned.



Thank you very much  
for your attention!



Covariant BChPT in the NN case

• E. Epelbaum, J. Gegelia, PLB716(2013)338 

- LO, kernel potential consistent with HB, plus Kadeshevsky 
equaiton 

• E. Epelbaum, A.M. Gasparyan, J. Gegelia,  
Eur.Phys.J. A51 (2015), 71 

• NLO contact terms treated non-perturbatively to solve 1S0 
discrepancy 

• J. Behrendt, E. Epelbaum, J. Gegelia et al., 
1606.01489 
- LO: higher derivative terms added—equivalent to add form 

factors



EFT & ChPT Citations 

• Steven Weinberg, “Phenomenological Lagrangians, ” 
Physica A96 (1979)327-340—Inspire cited 2838 times 

• J. Gasser and H. Leutwyler, “Chiral Perturbation Theory 
to One Loop,” Annals Phys. 158 (1984)142—Inspire 
cited 3595 times 

• J. Gasser and H. Leutwyler, “Chiral Perturbation 
Theory: Expansions in the Mass of the Strange Quark,” 
Nucl. Phys. B 250(1984)465—Inspire cited 3412 times

as of July 8th, 2016



Chiral Force Citations

• Steven Weinberg, “Nuclear forces from chiral Lagrangians,” 
Phys.Lett. B251 (1990) 288-292—inspire cited 1013 times 

• Steven Weinberg, “Effective chiral Lagrangians for nucleon - 
pion interactions and nuclear forces,” Nucl.Phys. B363 (1991) 
3-18—-inspire cited 971 times 

• D.R. Entem and  R. Machleidt, “Accurate charge dependent 
nucleon nucleon potential at fourth order of chiral perturbation 
theory,”Phys.Rev. C68 (2003) 041001 —839 times 

• E. Epelbaum, W. Glockle, Ulf-G. Meissner, “The Two-nucleon 
system at next-to-next-to-next-to-leading order ,” Nucl.Phys. 
A747 (2005) 362-424 —-452 times

as of July 8th, 2016

http://inspirehep.net/record/28641


Weinberg Power Counting

✤ Potential organized by

✤ Chiral power counting

• B: number of external baryons

• L: number of GB loops

• νi: number of vertices with dimension Δi

- di: number of derivatives or NGB masses

- bi: number of baryon fields in the interaction Δi

36 3 Chiral Perturbation Theory in SU(3)

3.6 Power Counting
Finally we need a criterion for the importance of a Feynman diagram, i.e. a power count-
ing scheme. For the mesonic sector this is straightforward. It follows by an argument of
Weinberg: the transition amplitude obtained from a Feynman diagram can be written
as

M = M (q, g, µ) = q‹f (q/µ, g) , (3.57)

where µ is some renormalization scale and g is a generic symbol for the relevant low-
energy constants. ‹ is called the chiral dimension. A meson propagator contributes ≠2
powers of q to the S-matrix element. A vertex of L (d)

„ contributes as +d powers and a
four-momentum integration contributes +4. This leads to the formula

‹ = 4L ≠ 2IM +
ÿ

d

dNd , (3.58)

where Nd is the number of vertices originating from L (d)
„ . IM is the number of internal

meson lines and L is the number of meson loops.

When adding baryons to the e�ective Lagrangian the additional mass scale MB ap-
pears, even in the chiral limit. This scale destroys the power counting above. To over-
come this problem one can treat the baryons non-relativistically (as static sources) with
relativistic corrections, cf. Ref. [Wei91]. This leads to an expansion in 1/MB. The baryon
mass is of the same order of magnitude as the chiral scale, MB ¥ �‰. Therefore after
the expansion in MB, the baryon mass scale is treated in the power counting as the scale
�‰. The baryon propagator in the non-relativistic limit contributes then ≠1 powers of
q to the S-matrix element, and one obtains

‹ = 4L ≠ 2IM ≠ IB +
ÿ

d

dNd , (3.59)

with IB the number of internal baryon lines. Nd is the number of vertices originating
from terms of the Lagrangian with chiral dimension d.

If this power counting were completely true, it would rule out the existence of baryon
bound states, cf. Ref. [Wei91]. Fortunately there are diagrams that violate this power
counting, the two-particle reducible diagrams. This leads to the definition of an e�ective
potential which contains only the (two-particle) irreducible parts of the T -matrix. After
applying power counting to this e�ective potential Ve� , it is inserted in a regularized
Lippmann-Schwinger equation. From solving the Lippmann-Schwinger equation one
obtains then the full T -matrix including the reducible, also called iterated, diagrams to
generate bound states and scattering states.

The terms in the e�ective potential are ordered according to Eq. (3.59), which can be
simplified for the baryon-baryon interaction by employing topological identities:

Ve� = Ve� (q, g, µ) =
ÿ

‹

q‹V‹ (q/µ, g) , (3.60)

‹ = 2 ≠ 1
2B + 2L +

ÿ

i

vi�i , �i = di + 1
2bi ≠ 2 , (3.61)
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Leading order: ν=0

• B=4, L=0, Δi=0

- contact: di=0;bi=4

- one pion exchange: di=1, bi=2

3.6 Power Counting 37

where B is the number of external baryons, L is the number of Goldstone boson loops
and vi is the number of vertices with dimension �i. For a vertex with dimension �i, the
number of derivatives or Goldstone boson masses is denoted by di, and bi is the number
of internal baryon lines. The soft scale q is either a baryon three-momentum, a Goldstone
boson four-momentum or a Goldstone boson mass. Because of the high baryon mass,
we can neglect any baryon-loop e�ects in the potential. We use a convention such that
a positive potential in momentum space corresponds to attraction, cf. Appendix A.

Let us now look closer at baryon-baryon interactions. The leading order (LO) potential
is given by ‹ = 0 and B = 4, L = 0, �i = 0. There are two possibilities: non-derivative
four-baryon contact terms (di = 0, bi = 4 and one-meson-exchange diagrams (di = 1,
bi = 2).

At the next order ‹ = 1 one has B = 4, L = 0, �i = 1. All potentials at this order
vanish because of parity conservation and Lorentz symmetry. There are also no 1/MB
corrections to one-meson exchange.

The next-to-leading order (NLO) potential is given by ‹ = 2, where B = 4, L = 0,
�i = (2 or 2 ◊ 1); or B = 2, L = 1, �i = 0. The former gives rise to new contact term
potentials. The latter describe one-loop two-meson exchange processes:

Also, relativistic 1/M2
B corrections to one-meson-exchange diagrams enter at this chiral

order. One can also generate at this order diagrams such as

They serve to renormalize baryon lines, meson lines and coupling constants. We use
a modified minimal subtraction scheme called ÁMS where we omit these diagrams and
use the physical values of these quantities instead. Divergences generated in the loop
diagrams above are treated in dimensional regularization. All ultraviolet divergences can
be absorbed by a redefinition of the parameters and fields of the Lagrangian using this ÁMS
scheme, since the Lagrangian contains all terms consistent with the given symmetries.
The low-energy constants and contact term parameters therefore consist of both a finite
part and an infinite part.



ν=1 vanishes

• B=4, L=0, Δ=1

• Parity conservation



Next-to-leading order ν=2

• B=4, L=0, Δi=2 or 2x1

• B=4, L=1, Δi=0

3.6 Power Counting 37
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Standard Model of Particle Physics



Number of parameters for the np potential



Covariance Matrix



核⼒力力—微观核物理理的基础
•维象传统核⼒力力 

- V.G.J. Stocks et al., PWA93, Phys. ReV. C48, 792(1993)—Inspire cited 637 
times 

- [V.G.J. Stocks et al., Reid93, Phys. Rev. C49, 2950(1994)—Inspire cited 1054 
times 

- Robert B. Wiringa et al, AV18,  Phys. Rev. C51, 38(1995)—Inspire cited 1975 
times 

- R. Machleidt, CD-Bonn, Phys. Rev. C63,024001(2001)—Inspire cited 1050 times 

•⼿手征核⼒力力 
- Steven Weinberg (Nobel Prize 1979), “Nuclear forces from chiral Lagrangians,” 

Phys.Lett. B251 (1990) 288-292—inspire cited 1013 times 

- Steven Weinberg (Nobel Prize 1979), “Effective chiral Lagrangians for nucleon - 
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