Decays of heavy baryons

Atsushi Hosaka RCNP, Osaka University YITP Molecule November 22nd (Tue), 2016

- 1. Exotic hadrons
- 2. Charmed baryons Structure and Decays
- 3. Summary

1. Exotic hadrons

1. Exotic hadrons

X(3872) first observation PRL91,262001(2003)

S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003)

Seminar@YITP Molecule. 2016, Nov. 22

Neutral X, Y, Z₀ states

Seminar@YITP Molecule. 2016, Nov. 22

Charged Z states

Seminar@YITP Molecule. 2016, Nov. 22

Properties of X(3872)

- 1. X(3872) exists
- 2. The mass is close to the threshold
- 3. The decay with is small = long life time
- 4. No isospin partner
- 5. Isospin is broken
- 6. Spin and parity 1^{++}
- 7. The large decay rate into DD^*
- 8. A large production rate in the prompt reactions

Dominated by DD* molecule but with a small fraction of $c\overline{c}$

- 2. The mass is close to the threshold
- 3. The decay with is small = long life time
- 4. No isospin partner
- 5. Isospin is broken

$$M (D^{\pm} + D^{*\mp}) = 1869.61 + 2010.29 = 3879.87 \,\text{MeV}$$

$$\int \sim 8.07 \,\text{MeV}$$

$$M (D^{0} + D^{*0}) = 1864.84 + 2006.96 = 3871.80 \,\text{MeV}$$

$$\int \sim 0.11 \,\text{MeV}$$

$$M(X(3872)) = 3871.69 \,\text{MeV}$$

$$\int X(3872)$$

$$\Gamma < 1.2 \,\text{MeV}$$

$$\frac{\operatorname{Br}(X(3872) \to J/\psi + 3\pi(\omega))}{\operatorname{Br}(X(3872) \to J/\psi + 2\pi(\rho))} \simeq 1$$

 775 ± 4

 $m_{X(3872)} - m_{J/\psi}$ $m_{X(3872)} - m_{\psi(2S)}$ *X*(3872) *X*(3872)

Decay Rate of X(3872)

Mode	9	Fraction (Γ_i / Γ)	Scale Factor/ Confidence Level P (MeV/c)
Γ_1	$e^{+}e^{-}$		1936
Γ_2	$\pi^+\pi^- J/\psi(1S)$	> 2.6%	650
Γ_3	$ ho^0 J/\psi(1S)$		-1
Γ_4	$\omega J/\psi(1S)$	> 1.9%	-1
Γ_5	$D^0\overline{D}^0\pi^0$	> 32%	117
Γ_6	$\overline{D}^{*0}D^0$	> 24%	3
Γ_7	γγ		1936
Γ_8	$D^0\overline{D}^0$		520
Γ9	D^+D^-		502
Γ_{10}	$\gamma \chi_{c1}$		344
Γ_{11}	$\gamma \chi_{c2}$		303
Γ_{12}	γJ/ψ	$> 6 \times 10^{-3}$	697
Γ_{13}	$\gamma\psi(2S)$	> 3.0%	181
Γ_{14}	$\pi^+\pi^-\eta_c(1S)$	not seen	746
Γ_{15}	$p\overline{p}$	not seen	1693
► C-viol	lating decays		

Prompt reactions in comparison with the deuteron

FIG. 6 (color online). Antideuteron events produced in pp according to 10^9 HERWIG events. We confront with ALICE deuteron production data (red circles) [23], and with CMS X(3872) data (green squares) [26]. The blue solid line is the MC prediction in the $|\eta| < 0.9$ region, as in ALICE data, which we use for the normalization. The green line (a bit higher in the right panel) corresponds to the |y| < 1.2 region, as in CMS data, and is normalized accordingly.

What is *X*(3872)

- It is mostly a *DD* molecular like state* just at the threshold.
- It also contains a <u>*cc*</u> components</u> To be solved:
- What is the size of the *X*
- Interaction between D and D^*
- Identification of $\chi_{CJ}(2s)$

LHCb found Pentaquarks

PRL 115, 072001 (2015)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

Ş

week ending 14 AUGUST 2015

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays

R. Aaij *et al.** (LHCb Collaboration) (Received 13 July 2015; published 12 August 2015)

Observations of exotic structures in the $J/\psi p$ channel, which we refer to as charmonium-pentaquark states, in $\Lambda_b^0 \rightarrow J/\psi K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb⁻¹ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of $4380 \pm 8 \pm 29$ MeV and a width of $205 \pm 18 \pm 86$ MeV, while the second is narrower, with a mass of $4449.8 \pm 1.7 \pm 2.5$ MeV and a width of $39 \pm 5 \pm 19$ MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

DOI: 10.1103/PhysRevLett.115.072001

PACS numbers: 14.40.Pq, 13.25.Gv

State	Mass (MeV)	Width (MeV)	Fit fraction (%)	Significance
P _c (4380)⁺		205±18±86	8.4±0.7±4.2	9σ
P _c (4450)⁺	4449.8±1.7±2.5	39± 5±19	4.1±0.5±1.1	12σ

Best fit has J^P=(3/2⁻, 5/2⁺), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) are preferred

LHCb found Pentaquarks

7-8 TeV pp collision —> Λ_b

$$\Lambda_b \longrightarrow J/\psi, p, K$$

This provides pseudo J/ ψ -p scattering

Either resonance or cusp?

PRL 105, 232001 (2010)

PHYSICAL REVIEW LETTERS

week ending 3 DECEMBER 2010

Prediction of Narrow N^* and Λ^* Resonances with Hidden Charm above 4 GeV

Jia-Jun Wu,^{1,2} R. Molina,^{2,3} E. Oset,^{2,3} and B. S. Zou^{1,3}

$1/2^{-}$

TABLE II. Pole positions z_R and coupling constants g_a for the states from $PB \rightarrow PB$.

(I, S)	z_R (MeV)		g_a	
(1/2, 0)		$\bar{D}\Sigma_c$	$ar{D}\Lambda_c^+$	
(0, -1)	4269	2.85 $ar{D}_s \Lambda_c^+$	$\stackrel{0}{\bar{D}\Xi_c}$	$ar{D}\Xi_c'$
	4213	1.37	3.25	0
	4403	0	0	2.64

$$V_{ab(P_1B_1 \to P_2B_2)} = \frac{C_{ab}}{4f^2} (E_{P_1} + E_{P_2}),$$
$$V_{ab(V_1B_1 \to V_2B_2)} = \frac{C_{ab}}{4f^2} (E_{V_1} + E_{V_2})\vec{\epsilon}_1 \cdot \vec{\epsilon}_2,$$

1/2-, 3/2-

TABLE III. Pole position and coupling constants for the bound states from $VB \rightarrow VB$.

(I, S)	z_R (MeV)		g_a	
(1/2, 0)		$ar{D}^*\Sigma_c$	$ar{D}^*\Lambda_c^+$	
(0, -1)	4418	$2.75 \\ \bar{D}^* \Lambda^+$	0 $\bar{D}^*\Xi$	$\bar{D}^* \Xi'$
(0, 1)	4370	1.23	3.14	
	4550	0	0	2.53

Threshold effects?

Remarks on the P_c structures and triangle singularities

Feng-Kun Guo^{1,*}, Ulf-G. Meißner^{2,3,†}, Juan Nieves^{4‡} and Zhi Yang^{2,§}

 ¹Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190, China
 ²Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
 ³Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
 ⁴Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia, Spain

September 20, 2016

Abstract

It was proposed that the narrow $P_c(4450)$ structure observed by the LHCb Collaboration in the reaction $\Lambda_b \to J/\psi p K$ might be due to a triangle singularity around the χ_{c1} -proton threshold at 4.45 GeV. We discuss the occurrence of a similar triangle singularity in the $J/\psi p$ invariant mass distribution for the decay $\Lambda_b \to J/\psi p \pi$, which could explain the bump around 4.45 GeV in the data. More precise measurements of this process would provide valuable information towards an understanding of the P_c structures.

Diagrams

Seminar@YITP Molecule. 2016, Nov. 22

- There is a structure at 4450 MeV decaying into $p J/\psi$
- There was a prediction as molecular of $\Sigma_c + D^*$
- Very neat the threshold of $\chi_{c1}(3510) + p(940)$
- Resonance or cusp?

From exotics to conventional

- Exotic phenomena appear *exotic* mostly because we do not know much about the QCD dynamics for hadrons.
- There are many un-described phenomena especially in resonance region.
- Perhaps we need to come back to the most conventional questions, what are the essential mechanism (dynamics) for hadronic excitations
- Keywords:
- Correlations, thresholds, coupled channels, ...
- Heavy baryon systems may provide opportunities for the study of some simple aspects of them.

2. Charmed baryons

p			5-4		
n	$\Delta(1232) 3/2^+$	Λ	$\sum_{i=1}^{n}$	Ξ^0	
N(1440) 1/2 ⁺	$\Delta(1600) 3/2^+$	$\Lambda(1405) 1/2^{-1}$	$\sum_{i=1}^{n}$		
$N(1520) 3/2^{-1}$	$\Delta(1620) 1/2^{-1}$	$\Lambda(1520) 3/2^{-1}$	$\sum (1285) 2/2^{+}$	$\frac{E}{E(1.520)} = 2.04$	_
N(1535) 1/2-	$\Delta(1700) 3/2^{-1}$	$A(1600) 1/2^+$	$\Sigma(1303) 372^{\circ}$ $\Sigma(1480)$ Bumps	E(1530) 3/2'	
$N(1650) 1/2^{-1}$	$\Delta(1750) \ 3/2$	$\Lambda(1670) 1/2^{-1}$	$\Sigma(1560)$ Bumps	$\Xi(1620)$	0
$N(1675) 5/2^{-1}$	$\Delta(1730) 1/2$ $\Lambda(1000) 1/2^{-1}$	$\Lambda(1690) 3/2^{-1}$	$\Sigma(1580) 3/2^{-1}$	$\Xi(1690)$	52
$N(1690) 5/2^+$	$\Delta(1900) 1/2$ $\Lambda(1005) 5/2^{+}$	$\Lambda(1710) 1/2^+$	$\Sigma(1620) 1/2^{-1}$	$\Xi(1820) 3/2^{-1}$	-
N(1000) 3/2 N(1700) 2/2=	$\Delta(1905) 5/2^+$	$\Lambda(1710) 1/2^{-1}$	$\Sigma(1620)$ Producti	<i>E</i> (1950)	
N(1710) 5/2	$\Delta(1910) 1/2^+$	$\Lambda(1810) 1/2^+$	$\Sigma(1660) \ 1/2^+$	$\Xi(2030)$	
$N(1/10) 1/2^{+}$	$\Delta(1920) \ 3/2^+$	A(1810) 1/2 $A(1820) 5/2^+$	$\Sigma(1670) 3/2^{-1}$	$\Xi(2120)$	
N(1720) 3/2 ⁺	$\Delta(1930) 5/2^{-1}$	$A(1820) 5/2^{-}$	$\Sigma(1670)$ Bumps	$\Xi(2250)$	
N(1860) 5/2+	$\Delta(1940) \ 3/2^{-}$	A(1050) 5/2 $A(1000) 2/2^+$	$\Sigma(1690)$ Bumps $\Sigma(1720)$ $2/2+$	$\mathbf{B}(2370)$	<i>S</i> –3
N(1875) 3/2 ⁻	$\Delta(1950) 7/2^+$	$A(1890) 5/2^{+}$	$\Sigma(1750) 5/2^{+}$ $\Sigma(1750) 1/2^{-}$	$\vec{E}(2500)$	
N(1880) 1/2 ⁺	$\Delta(2000) 5/2^+$	A(2000) $A(2020)$ $7/2^+$	$\Sigma(1750) 1/2$ $\Sigma(1770) 1/2^+$		
N(1895) 1/2 ⁻	$\Delta(2150) 1/2^{-1}$	$A(2020) 1/2^{-1}$	$\Sigma(1775) 5/2^{-1}$	0-	
$N(1900) 3/2^+$	$\Lambda(2200) 7/2^{-1}$	A(2050) 5/2	$\Sigma(1840) 3/2^+$	Ω	
$N(1990) 7/2^+$	$\Delta(2300) 9/2^+$	A(2100) //2 $A(2110) 5/2^{+}$	$\Sigma(1880) 1/2^+$	\Q (2250)	
$N(2000) 5/2^+$	$\Delta(2350) 5/2^{-}$	A(2110) 5/2'	$\Sigma(1900)$ 1/2 ⁻	$\Omega(2380)^{-1}$	
$N(2000) 3/2^+$	$\Delta(2330) 312$ $\Lambda(2200) 7/2^+$	A(2325) 3/2	$\Sigma(1915) 5/2^+$	$\Omega(2470)^{-}$	
N(2040) 5/2	$\Delta(2390) 112^{+}$	$A(2350) 9/2^+$	<i>Σ</i> (1940) 3/2 ⁺		
N(2000) 3/2	$\Delta(2400) 9/2$	A(2585) Bumps	<i>Σ</i> (1940) 3/2 ⁻		
N(2100) 1/2'	$\Delta(2420) 11/2^+$		$\Sigma(2000) 1/2^{-1}$		
N(2120) 3/2 ⁻	$\Delta(2750) \ 13/2^{-1}$		$\Sigma(2030) 7/2^+$		
N(2190) 7/2 ⁻	$\Delta(2950) \ 15/2^+$		$\Sigma(2070) 5/2^+$		
N(2220) 9/2+			$\Sigma(2080) \ 3/2'$ $\Sigma(2100) \ 7/2^{-1}$		
N(2250) 9/2 ⁻			$\Sigma(2100) / / Z$ $\Sigma(2250)$		
N(2300) 1/2 ⁺			$\Sigma(2455)$ Bumps		
$N(2570) 5/2^{-}$			$\Sigma(2620)$ Bumps		
$N(2600) 11/2^{-1}$			$\Sigma(3000)$ Bumps		
N(2700) 13/2 ⁺	~ .		$\Sigma(3170)$ Bumps		
11(2100) 13/2	Semi	nar@YITP Molecule.	2016, Nov. 22		20

Heavy quarks distinguish the internal modes λ and ρ

Isotope-shift: Copley-Isgur-Karl, PRD20, 768 (1979)

$$m_Q = m_{u,d}$$

Heavy quarks distinguish the internal modes λ and ρ

Isotope-shift: Copley-Isgur-Karl, PRD20, 768 (1979)

These structures should be sensitive to reactions

Harmonic oscillator

Wave functions ~ Harmonic oscillator

$$H = \frac{p_1^2}{2m_q} + \frac{p_2^2}{2m_q} + \frac{p_3^2}{2M_Q} - \frac{P^2}{2M_{tot}}$$

$$+ V_{conf}(HO) + V_{spin-spin}(Color - magnetic) + \dots$$

$$\Lambda^* c, \Sigma c, \dots$$

$$\Lambda^* c, \Sigma c, \dots$$

$$\Lambda_c (J^-; \lambda) = \begin{bmatrix} [\psi_1(\vec{\lambda})\psi_0(\vec{\rho}), d^0]^1, \chi_c \end{bmatrix}^{J=\frac{1}{2}, \frac{3}{2}} \sqrt{\langle R^2 \rangle} \sim 0.45 - 0.55 \text{ fm}$$

$$\Lambda_c (J^-; \lambda) = \begin{bmatrix} [\psi_0(\vec{\lambda})\psi_0(\vec{\rho}), d^1]^1, \chi_c \end{bmatrix}^{J=\frac{1}{2}, \frac{3}{2}} D^0 c$$

$$E c di-quark spin$$

$$\Delta_c (J^-; \lambda) = \left[\begin{bmatrix} \psi_0(\vec{\lambda})\psi_0(\vec{\rho}), d^1 \end{bmatrix}^1, \chi_c \end{bmatrix}^{J=\frac{1}{2}, \frac{3}{2}} D^1 c$$

Quark model state	S Ground s	states charm	ed baryons N	n = 0		
	(n_λ,ℓ_λ) ($(n_ ho,\ell_ ho)~d^s~j$	P J^{P}	possible assign	Iment	
A-states	(0, 0)	$(0,0)$ d^0 0	$+ 1/2^+$	$\Lambda_c(2286)$		
<i>qq</i> is made isosinglet	(0,0)	$(0,0)$ d^1 1	$(1/2, 3/2)^+$	$\Sigma_c(2455), \Sigma_c^*(2455), \Sigma_c^*(2455))$	2520)	
			3	3		
	Negative	e parity exci	ted charmed b	$_{\rm paryons}$ $n =$	1	
	$(n_{\lambda}, \ell_{\lambda})$	$(n_ ho,\ell_ ho)~d^s$.	$j^P \qquad J^P$	possible assig	nment	
	(0,1)	$(0,0)$ d^0	1^{-} $(1/2, 3/2)^{-}$	$- \Lambda_c^*(2595), \Lambda_c^*$	(2625)	
	(0,0)	$(0,1)$ d^1 ($1/2^{-1}$	_		
		-	1 (1/2, 3/2) $p^{-} (3/2, 5/2)^{-}$	$- \Lambda * (2880) ($	(2)	
			7	$\prod_{c} (2000) ($	(:)	
			/	5		
Positive parity excited charmed baryons	<i>n</i> = 2	Positive	parity excited	harmed bary	ons ($\lambda \rho$ -mode) n =	= 2
$(n_{\lambda}, \ell_{\lambda}) (n_{\rho}, \ell_{\rho}) d^{s} j^{P} \qquad J^{P}$ possib	le assignment	$(n_{\lambda}, \ell_{\lambda})$	$(n_ ho,\ell_ ho)~d^s~\ell$	$j^P \qquad J^P$	possible assignmen	t
$(1,0)$ $(0,0)$ d^0 0^+ $1/2^+$		(0,1)	$(0,1)$ d^1 0	$1^+ (1/2, 3/2)^+$		_
$(0,2) (0,0) d^0 2^+ (3/2,5/2)^+ \qquad \Lambda_c^*$	(2880)(?)		1	0^+ 1/2 ⁺		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$1^+ (1/2, 3/2)^+$ $2^+ (2/2, 5/2)^+$	$\Lambda * (2000) (2)$	
$(0,0) (0,2) d^{\circ} 2^{\circ} (3/2,5/2)^{\circ} \qquad \Lambda_{c}^{*}$	(2880)(?)		<u> </u>	$\frac{2}{1+} \frac{(3/2, 3/2)}{(1/2, 3/2)^+}$	$\Lambda_c(2880)(!)$	
7	1			$2^+ (3/2, 5/2)^+$	$\Lambda_{c}^{*}(2880)(?)$	
				3^+ $(5/2,7/2)^+$	$\Lambda_c^*(2880)(?)$	
	Seminar@YI	TP Molecule	e. 2016, Nov.	22 13	1	26

Masses

Three days lectures at U. Tokyo

Decays of hadrons

(A) Production(B) Formation of resonances(C) Decay of resonances

Decays —Pion emission—

On going, Nagahiro, Yasui, ..., Arifi

Nagahiro et al, arXiv:1609.01085

Two-body decays and Three-body decays

2. Decays — Pion emission — On going, Nagahiro, Yasui, ..., Arifi

Two-body decays

Nagahiro et al, arXiv:1609.01085

(1) $0h\omega \rightarrow 0h\omega$ (2) $1h\omega \rightarrow 0h\omega$ (3) $2h\omega \rightarrow 0h\omega$

Low lying decays, $0h\omega \rightarrow 0h\omega$, $1h\omega \rightarrow 0h\omega$ with small p_{π} (MeV)

To compare with $\Delta \rightarrow \pi N$ at $p_{\pi} \sim 230$ MeV Low energy pion dynamics works well

Low energy $\pi q q$ interaction

Non-relativistic $\vec{\sigma} \cdot \vec{p}_i, \ \vec{\sigma} \cdot \vec{p}_f$ Relativistic $\bar{q}\gamma_5 q \phi_{\pi}, \ \bar{q}\gamma^{\mu}\gamma_5 q \partial_{\mu}\phi_{\pi}$ PSPV: preferable

$$\mathcal{L}_{\pi qq}(x) = \frac{g_A^q}{2f_\pi} \bar{q}(x) \gamma_\mu \gamma_5 \vec{\tau} q(x) \cdot \partial^\mu \vec{\pi}(x)$$

 $g^{q}_{A} \sim 1$: Quark axial coupling Seminar@YITP Molecule. 2016, Nov. 22

(2) P-wave to ground transitions, $1h\omega \rightarrow 0h\omega$

P-wave $(1/2^{-}, 3/2^{-})$ to ground state $(1/2^{+})$

Nagahiro et al, arXiv:1609.01085

 $\Lambda_{c}(2595) 1/2^{-}$ $\Sigma_c^0 \pi^+$ $\Sigma_c^+ \pi^0$ $[\Sigma_c \pi]^+$ $\Sigma_{c}^{++}\pi^{-}$ full decay channel Experiments (MeV) [5] 2.6 ± 0.6 0.624 (24%) 0.624 (24%)Momentum q (MeV/c)29 $J_{\Lambda}(j)^P$ $(n_{\lambda}, \ell_{\lambda}), (n_{\rho}, \ell_{\rho})$ $1/2(1)^{-}$ (0,1), (0,0)1.5 - 2.90.13 - 0.250.15 - 0.281.2 - 2.4 $1/2(0)^{-}$ (0,0), (0,1)0 0 isospin violated $1/2(1)^{-}$ 6.5 - 11.90.57 - 1.040.63 - 1.155.3 - 9.7

- 80 % of the decay of is explained with strong isospin breaking
- λ -mode results consistent, ρ -mode results overestimate

Isospin breaking between $\pi^0 \Sigma_c^+$ and $\pi^+ \Sigma_c^0$, $\pi^- \Sigma_c^{++}$ Mass distribution of $\Lambda^*(2595)$ and different phase space

P-wave $(1/2^{-}, 3/2^{-})$ to ground state $(1/2^{+})$

Nagahiro et al, arXiv:1609.01085

 $\Lambda_{c}(2625) \ 3/2^{-}$

	dec	ay channel	full	$\Sigma_c^{++}\pi^-$	
Exj	perimental value Γ	(MeV) [5]	< 0.97	< 0.05 (< 5%)	D -wave decay
momentu	m of final particle	$q ({\rm MeV/c})$	_	101	
this work	$(n_{\lambda},\ell_{\lambda}),(n_{\rho},\ell_{\rho})$	$J_{\Lambda}(j)^P$			
Γ	(0,1), (0,0)	$1/2(1)^{-}$		5.4 - 10.7	
(MeV)		$3/2(1)^{-}$		0.024 - 0.039	
	(0,0), (0,1)	$1/2(0)^{-}$		0	

- Only a small part of the decay width is from the two-body
- The remaining is considered later

(1) Ground to ground transitions, $0h\omega \rightarrow 0h\omega$

Ground $(1/2, 3/2^+) \rightarrow$ Ground $(1/2^+)$ Nagahiro et al, arXiv:1609.01085

$B_i J^P$	$\Gamma_{\exp}^{\mathrm{full}}(\Gamma_i)$	q	$\Gamma_{\rm th}(\Sigma_c(J^+)^{++} \to \Lambda_c^{gs}(1/2^+; 2286)^+\pi^+)$
(MeV)	(MeV)	(MeV)	(MeV)
$\Sigma_c(2455) \ 1/2^+$	2.26 (2.26)	89	4.27-4.33
(2453.98)	(2.26)		
$(\omega_{\pi} = 0 \text{ limit})$			
$\Sigma_c(2520) \ 3/2^+$	14.9(14.9)	176	30.0-31.2
(2517.9)			
$(\omega_{\pi} = 0 \text{ limit})$			

Factor 2 difference, which is due to ...

$$g_{\mathrm{A}}^{q} = 1 \quad \rightarrow \quad g_{\mathrm{A}}^{N} = 5/3 < 1.25_{\mathrm{exp}}$$

(3) Transitions from higher states, $2h\omega \rightarrow 0h\omega$

$$R = \frac{\Gamma(\Sigma_c^*(3/2^+)\pi)}{\Gamma(\Sigma_c(1/2^+)\pi)}$$
 sensitive to J^P and the structure of the decaying particle

$$\Lambda_{\rm c}(2880) \; 5/2^+$$

	dec	ay channel	full	$[\Sigma_c^{(*)}\pi]_{ m total}$	$[\Sigma_c \pi]^+$	$[\Sigma_c^*\pi]^+$	R
Ex	perimental value I	Γ_{exp} (MeV)	5.8 ± 1.1 [24]				0.225 [40]
ıtu	m of final particle	q (MeV/c)			375	315	
	$(n_{\lambda}, \ell_{\lambda}), (n_{\rho}, \ell_{\rho})$	$J_{\Lambda}(j)^{P}$					
	$(0,2),\ (0,0)$	$5/2(2)^+$		11.2 - 26.1	1.2 - 2.8	9.9-23.3	8.1 - 8.4
	(0,0), (0,2)	$5/2(2)^+$		27.8 - 52.2	1.4 - 2.6	26.4 - 49.5	18.7 - 18.9
	(0,1), (0,1)	$5/2(2)_2^+$		51.7 - 109.6	1.8 - 3.5	49.9 - 106.1	27.5 - 30.1
		$5/2(2)_1^+$		0.63 - 1.68	0	0.63 - 1.68	(∞)
		$5/2(3)_2^+$		2.9 - 5.8	2.1 - 4.0	0.85 - 1.73	0.41 - 0.43

- Both absolute values and *R* ratio are sensitive to configurations $R = \frac{\Gamma(\Sigma_c^*(3/2^+)\pi)}{\Gamma(\Sigma_c(1/2^+)\pi)}$
- Brown muck of j = 3 seems preferred.
- This implies that $\Lambda_c(2940)$ could be $7/2^+$

Three-body decay

Three-body decay

Experimentally, $\Lambda_c(2625) \ 3/2^-, \Lambda_c(2595) \ 1/2^- \rightarrow \pi \pi \Lambda_c(2286) \ 1/2^+$

Effective Lagrangian Three-Body Decay of $\Lambda_c^*(2595)$

Effective Lagrangian Three-Body Decay of $\Lambda_c^*(2595)$

Decay Kinematics

Decay Width and Dalitz Region

 $\Lambda_c(2595)$ Assuming the λ -mode excitations

The Results (MeV)

Contribution	2-Body	3-Body	Exp. Data
$\Sigma_c^{++}\pi^-$	0.13 – 0.25	0.16	0.624 (24%)
$\Sigma_c^0 \pi^+$	0.15 – 0.28	0.25	0.624 (24%)
$\Sigma_c^+ \pi^0$	1.2 – 2.4	1.63	-
3-body	-	10^{-6} (tail Σ_c^*)	0.468 (18%)
Interference	-	0.05	-
Total	1.5 – 2.9	2.09	2.6 ± 0.6

- 80 % of the decay of $\Lambda_c(2595)$ is due to the two body decay: confirmed
- The virtual process of $\Sigma_c(2520)$ has only minor role due to the D-wave nature
- The remaining ~ 20 % is from other $\pi\pi$ couplings (σ , ...?)

$\Lambda_c(2520)$ The Results (MeV)

Contribution	2-Body	3-Body	Exp. Data
$\Sigma_c^{++}\pi^-$	0.024 - 0.039	0.036	< 0.05 (< 5%)
$\Sigma_c^0 \pi^+$	-	0.032	< 0.05 (< 5%)
$\Sigma_c^+ \pi^0$	-	0.053	-
3-body	-	0.180 (tail Σ_c^*)	(large)
Interference	-	0.033	-
Total	-	0.334	< 0.970

- The two body decay of $\Lambda_c(2625)$ is only minor
- The virtual process of $\Sigma_c(2520)$ is large due to S-wave nature
- With the ρ mode excitation, the width is overestimated
- → Λ_c(2595) and Λ_c(2625) are most likely the λ mode HQ doublet of l_{λ} (=1) + 1/2_Q = 1/2⁻, 3/2⁻

Summary

- There are X, Y, Z, Pc states are observed X(3872) is the best confirmed, the mass, spin parity, decay rates But the total decay with is not yet determined. Pc is well observed Their interpretations are not finalized
- Charmed baryons may provide a simple system of (di)quark dynamics Separation of the λρ mode is important Decay rates of low lying states seem consistent with quark model supplemented by chiral symmetry
- More on the quark correlations will be studied