Decays of heavy baryons

Atsushi Hosaka RCNP, Osaka University YITP Molecule November 27nd (Mon), 2016

Exotic hadrons
 Charmed baryons
 Structure and Decays

 Summary

1. Exotic hadrons

X(3872) first observation PRL91,262001(2003)

S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001 (2003)

Neutral X, Y, Z₀ states

Workshop@YITP Molecular. 2016, Nov. 28

LHCb found Pentaquarks

PRL 115, 072001 (2015)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

Ş

week ending 14 AUGUST 2015

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays

R. Aaij *et al.** (LHCb Collaboration) (Received 13 July 2015; published 12 August 2015)

Observations of exotic structures in the $J/\psi p$ channel, which we refer to as charmonium-pentaquark states, in $\Lambda_b^0 \rightarrow J/\psi K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb⁻¹ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of $4380 \pm 8 \pm 29$ MeV and a width of $205 \pm 18 \pm 86$ MeV, while the second is narrower, with a mass of $4449.8 \pm 1.7 \pm 2.5$ MeV and a width of $39 \pm 5 \pm 19$ MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

DOI: 10.1103/PhysRevLett.115.072001

PACS numbers: 14.40.Pq, 13.25.Gv

State	Mass (MeV)	Width (MeV)	Fit fraction (%)	Significance
P _c (4380)⁺		205±18±86	8.4±0.7±4.2	9σ
P _c (4450)⁺	4449.8±1.7±2.5	39± 5±19	4.1±0.5±1.1	12σ

Best fit has J^P=(3/2⁻, 5/2⁺), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) are preferred

From exotics to conventional

- Exotic phenomena appear *exotic* mostly because we do not know much about the QCD dynamics for hadrons.
- There are many un-described phenomena especially in resonance region.
- Perhaps we need to come back to the most conventional questions, what are the essential mechanism (dynamics) for hadronic excitations
- Also better understanding for hadron structure is important for their interactions
- Charmed baryons may provide a basic features of three quark systems, λ and ρ motions.
- Their identifications is useful to know the behavior of quarks

2. Charmed baryons

We have to produce

Production and decays

Fixed target experiment at J-PARC

(A) Production(B) Formation of resonances(C) Decay of resonances

Workshop@YITP Molecular. 2016, Nov. 28

Heavy quarks distinguish the internal modes λ and ρ

Isotope-shift: Copley-Isgur-Karl, PRD20, 768 (1979)

These structures should be sensitive to reactions

Wave functions ~ Harmonic oscillator

$$\begin{split} H &= \frac{p_1^2}{2m_q} + \frac{p_2^2}{2m_q} + \frac{p_3^2}{2M_Q} - \frac{P^2}{2M_{tot}} \\ &+ V_{conf}(HO) + V_{spin-spin}(Color-magnetic) + \dots \end{split}$$

 Λ^* c, Σ c, ...

Workshop@YITP Molecular. 2016, Nov. 28

Workshop@YITP Molecular. 2016, Nov. 28

Strategy

- Decays (transitions) are sensitive to the structure
- Calculate decay rates of various states
- Compare with experimental data and identify the structure

Decays —Pion emission—

On going, Nagahiro, Yasui, ..., Arifi

Nagahiro et al, arXiv:1609.01085

Two-body decays and Three-body decays

2. Decays — Pion emission— On going, Nagahiro, Yasui, ..., Arifi

Nagahiro et al, arXiv:1609.01085

Two-body decays

(1) $0h\omega \rightarrow 0h\omega$ (2) $1h\omega \rightarrow 0h\omega$ (3) $2h\omega \rightarrow 0h\omega$

Workshop@YITP Molecular. 2016, Nov. 28

Low lying decays with small pion momentum p_{π} (MeV) To compare with $\Delta \rightarrow \pi N$ at $p_{\pi} \sim 230$ MeV Low energy pion dynamics works well

Low energy $\pi q q$ interaction

Non-relativistic $\vec{\sigma} \cdot \vec{p}_i, \ \vec{\sigma} \cdot \vec{p}_f$ Relativistic $\bar{q}\gamma_5 q \phi_{\pi}, \ \bar{q}\gamma^{\mu}\gamma_5 q \partial_{\mu}\phi_{\pi}$ *PS PV: preferable*

$$\mathcal{L}_{\pi q q}(x) = \frac{g_A^q}{2f_\pi} \bar{q}(x) \gamma_\mu \gamma_5 \vec{\tau} q(x) \cdot \partial^\mu \vec{\pi}(x)$$
$$g_A^q \sim 1: \text{Quark axial coupling}$$

(2) P-wave to ground transitions, $1h\omega \rightarrow 0h\omega$

P-wave $(1/2^{-}, 3/2^{-})$ to ground state $(1/2^{+})$

Nagahiro et al, arXiv:1609.01085

Λ _c (2595) 1/	2-	· · · ·				
	decay channel	full	$[\Sigma_c \pi]^+$	$\Sigma_c^{++}\pi^-$	$\Sigma_c^0 \pi^+$	$\Sigma_c^+ \pi^0$
Experiments	(MeV) [5]	2.6 ± 0.6	- [0.624 (24%)	0.624 (24%)	_
Momentum	$q \; ({\rm MeV/c})$	-	_	t	†	29
$(n_{\lambda},\ell_{\lambda}), (n_{\rho},\ell_{\lambda})$	$(\mathcal{I}_{ ho}) = J_{\Lambda}(j)^P$	_				
(0,1), (0,0)	$1/2(1)^{-}$		1.5 - 2.9	0.13 - 0.25	0.15 – 0.28	1.2 - 2.4
(0,0), (0,1)	$1/2(0)^{-}$		0	0	isospin vi	iolated
	$1/2(1)^{-}$		6.5 - 11.9	0.57 - 1.04	0.63 - 1.15	5.3 - 9.7

- 80 % of the decay of is explained with strong isospin breaking
- λ -mode results consistent, ρ -mode results overestimate

P-wave $(1/2^{-}, 3/2^{-})$ to ground state $(1/2^{+})$

Nagahiro et al, arXiv:1609.01085

 $\Lambda_{c}(2625) \ 3/2^{-}$

	dec	ay channel	full	$\Sigma_c^{++}\pi^-$	
Exp	perimental value Γ	(MeV) [5]	< 0.97	< 0.05 (< 5%)	D-wave decay
momentu	m of final particle	$q ({\rm MeV/c})$	-	101	
this work	$(n_{\lambda},\ell_{\lambda}), (n_{\rho},\ell_{\rho})$	$J_{\Lambda}(j)^P$			
Γ	(0,1), (0,0)	$1/2(1)^{-}$		5.4 - 10.7	
(MeV)		$3/2(1)^{-}$		0.024 - 0.039	
	(0,0), (0,1)	$1/2(0)^{-}$		0	

- Only a small part of the decay width is from the two-body
- The remaining is considered later

(3) Transitions from higher states, $2h\omega \rightarrow 0h\omega$

Sensitive to J^P and the structure of the decaying particle

$$\Lambda_{\rm c}(2880) \; 5/2^+$$

	decay channel	full	$[\Sigma_c^{(*)}\pi]_{ m total}$	$[\Sigma_c \pi]^+$	$[\Sigma_c^*\pi]^+$	R
Experimental ^v	value Γ_{exp} (MeV)	$5.8 \pm 1.1 \ [24]$				0.225 [40]
tum of final pa	article q (MeV/c)			375	315	
$(n_{\lambda}, \ell_{\lambda}), (n$	$J_{ ho},\ell_{ ho})=J_{\Lambda}(j)^{P}$					
(0,2), (0,	0) 5/2(2)+		11.2 - 26.1	1.2 - 2.8	9.9-23.3	8.1 - 8.4
(0, 0), (0,	2) $5/2(2)^+$		27.8 - 52.2	1.4 - 2.6	26.4 - 49.5	18.7 - 18.9
(0, 1), (0,	1) $5/2(2)_2^+$		51.7 - 109.6	1.8 - 3.5	49.9 - 106.1	27.5 - 30.1
	$5/2(2)_1^+$		0.63 - 1.68	0	0.63 - 1.68	(∞)
	$5/2(3)_2^+$		2.9 - 5.8	2.1 - 4.0	0.85 - 1.73	0.41 - 0.43

- Both absolute values and *R* ratio are sensitive to configurations $R = \frac{\Gamma(\Sigma_c^*(3/2^+)\pi)}{\Gamma(\Sigma_c(1/2^+)\pi)}$
- Brown muck of j = 3 seems preferred.
- This implies that $\Lambda_c(2940)$ could be $7/2^+$

Three-body decay

Three-body decay Experimentally, $\Lambda_c(2625)$ 3/2⁻, $\Lambda_c(2595)$ 1/2⁻ $\rightarrow \pi\pi\Lambda_c(2286)$ 1/2⁺

Workshop@YITP Molecular. 2016, Nov. 28

 $\Lambda_{\rm c}(2595)$

		λ -mode	j = 0	node $j = 1$	Exp.
	$\Sigma_c^{++}\pi^-$	0.161	_	0.680	0.624 (24%)
Two-body	$\Sigma_c^0 \pi^+$	0.248	_	1.075	0.624~(24%)
to open Σ_c	$\Sigma_c^+ \pi^0$	1.628	_	6.891	_
					Three-body $0.468 (18\%)$
Three-body	$\Sigma_c^{*++}\pi$	10^{-6}	_	10^{-6}	- -
the such	$\Sigma_c^{*0}\pi$	10^{-6}	_	10^{-6}	-
through	$\Sigma_c^{*+}\pi$	10^{-6}	-	10^{-6}	-
closed Σ_c	Interference	0.047	_	0.198	-
	Total	2.084	-	8.844	2.6 ± 0.6

- 80 % of the decay of $\Lambda_c(2595)$ is due to the two body decay: confirmed
- The virtual process of $\Sigma_c(2520)$ has only minor role due to the D-wave nature
- The remaining ~ 20 % is from other $\pi\pi$ couplings (σ , ...?)

$\Lambda_{\rm c}(2520)$

		λ -mode	$\begin{array}{c} \rho\text{-m}\\ j=1 \end{array}$	node $j = 2$		Exp.
Two-body	$\Sigma_c^{++}\pi^-$	0.036	0.018	0.033		<0.05 (<5%)
to open Σ	$\Sigma_c^0 \pi^+$	0.032	0.016	0.030		<0.05~(<5%)
to open 2 _c	$\Sigma_c^+ \pi^0$	0.053	0.027	0.049		-
					Three-body	(large)
Three-body	$\Sigma_c^{*++}\pi^-$	0.044	0.189	0		-
through	$\Sigma_c^{*0} \pi^+$	0.064	0.285	0		-
$1 \sim 1 \Sigma^*$	$\Sigma_c^{*+}\pi^0$	0.071	0.339	0		-
closed Σ_c	Interference	0.034	0.148	10^{-4}		-
	Total	0.334	1.022	0.112		< 0.97

- The two body decay of $\Lambda_c(2625)$ is only minor
- The virtual process of $\Sigma_c(2520)$ is large due to S-wave nature
- With the ρ mode excitation, the width is overestimated
- → Λ_c(2595) and Λ_c(2625) are most likely the λ mode HQ doublet of l_{λ} (=1) + 1/2_Q = 1/2⁻, 3/2⁻

Summary

- There are X, Y, Z, Pc states are observed Their properties have brought us many questions about hadron interactions.
- Charmed baryons may provide a simple system of (di)quark dynamics Separation of the λρ mode is important Decay rates of low lying states seem consistent with quark model supplemented by chiral symmetry
- More on the quark correlations will be studied