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Outline

© Why do we study nX. system?

% What is ChEFT (in a nutshell)?

© How do we go about a system with very soft pions?

% What happens if we throw two pions at X.?

% Have we seen the proposed X, resonance?




A(2595)" as an S-wave resonance in X channel

% 1~2 MeV above threshold — extremely shallow

© Width ~ 2MeV — narrow

% Strong attraction (/=0, L=0) between X.and a very

soft pion (O ~ 20MeV)

% Pion mass diff. ignored for the moment

% Can a X trap two soft pions? =0 =




very) Brief intro to Chiral EFT

3-momenta

Few GeVs

~ 1 GeV

~ Few MeVs
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QCD pert. theory

Lattice QCD

Chiral EFT ¢ 5




Chiral symmetry
% Approximate symmetry SU(3):xSU(3)z of QCD Lagrangian
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Pions as Nambu-Goldstone bosons

% Switch to two flavors: u and d

% However, QCD vacuum (ground state) not invariant under chiral rotations,
SU(2)4, the axial part of SU(2):xSU(2)r

= spontaneous breaking of SU(2)4
% Pions are Nambu-Goldstone bosons
% Would be massless if 1,0 =10

% Couplings of pions to other particles (including self interactions)

proportional to momenta, «Q, or squared mass, = M’




Pion-baryon interactions

% Pion-baryon interactions constrained by spontaneous broken
chiral symmetry

+ Coupling constants may be fixed, e.g. Weinberg-Tomozawa for 2.
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+ Coupling constants may NOT be fixed — Low Energy Constants (LEC)
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Power counting for Q ~ mx

% Nucleon propagator — 1/0

‘Two-pion exchanges of nuclear forces

% Pion propagator — 1/0?

% Loop integral — Q%/(167?)

2
© A pion loop brings a suppression factor of (473 )

% Naive dimensional analysis assumed for undetermined LECs
= Minimal number of LECs at a given order




RG inv. constrains PC

3-momenta
A A : .
High-engery @ Cutoff — arbitrary separat.lon between
states short and long-range physics
— —|—= — — = Cutoff ® Cutoff independence (RG invariance)
= free of modeling short-range physics
Low-energy
states ® Modity PC if it violates RG invariance




Nuclear forces in 3P0
The symptom:
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Special kinematics may change PC

qlg ® g% = 4ms> = unphysical region,
7 taking complex values
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% Pions near shell = k ~ % , cancellation between k* and m,2
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% Pions extremely close to shell:
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% Overall, enhanced by ~ mn/mx, compared with standard ChPT counting
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A(2595)" as an S-wave resonance in X channel

% 1~2 MeV above threshold — extremely shallow

© Width ~ 2MeV — narrow

% Strong attraction (/=0, L=0) between X.and a very

soft pion (O ~ 20MeV)

% Pion mass diff. ignored for the moment

% Can a X trap two soft pions? =0 =




Shallow, narrow S-wave resonances
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wave func.
Ep— F----- ‘ I

4
% Resonance = a would-be bound state coupled to continuum
% Shallow = tuning V1s0 Er— 0
€ Narrow

= tuning V>, weakly coupled to continuum, so width — 0

% Less tuning for higher partial waves, because of centrifugal barriers




S-wave resonance poles

(Hyodo *13)

Effective range £0) = 1
expansion :

Fixing r» and
tuning a

% In higher waves, two poles
meet at threshold

@ Ad(2595)" (A.") shallow and
narrow = both » and a are
large
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Generated by Weinberg-Tomozawa?
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A zero-range pot. subject to renormalization, d®)(r), coupling constant not

2
A pion loop always suppressed by ( ) — no good reason to resum

fixed by symmetry — resummation of WT facing 1ssue of renormalization

It’s unlikely that WT alone can generate a near-threshold S-wave
resonance

“Subleading” 77 XY highly enhanced by QCD dynamics
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Explicit field of A:(2595)"

LRGN h
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Y coupled to the S wave of n2. — time derivative on « (chiral
symmetry, crucial!)

o ~ IMeV above nX. threshold
Small pion momenta, O ~ 20MeV — kp = m, + O(k’/my)

> decay width ~ 2MeV, approximated as stable




Counting (very) soft pions

€ pion prop. ~ 1/0? o)

@ baryon prop. ~ 1/(Q%/mx)
/ 44l 1 Q7
D)= s

nonrelativistic




Counting (very) soft pions
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r=-19fm _ h = 0.65
a=-10 fm

© rcan be quite large when A < v4rf, = 328MeV

© a single fine-tuning A — 1 — 0 makes both a and r large

— Chiral symmetry helps A«(2595)" be shallow AND narrow

(BwL °15)




Breakdown of universality

% Universality : observables expected to scale w/  m} —m, — 0

% Additional large length scale of r — universality relations break down
sooner than expected

E.g., binding energy when m, > m
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Can a X attract more pions?

¥ very soft n’s interact w/ other hadrons weakly

¥ mX.potential is energy-dependent
— more complicated than independent-boson systems
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Searching 3-body states by finding poles of TA." “scattering
amplitude” (or any other correlation func. having same quantum
numbers as (0|7, Y7, ¥10))




wA." scattering
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Estimating corrections

2 / 12
Pion s-wave At
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Integral equation

q: 3-mom.
8r/lr| 2 ’
(¢, B) 3(q2—|—8)+37T/zl ¢ =&+ +10
E: total CM energy — t(l; €, B)
= 2m,F 6 ~ ’
E My ; _%_§(5_12)+\/12—8—z’0—i0
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EA: A energy L o (ha)
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% 1(q) — 1/¢?, so integral converges as [ — oo; and cutoff
independent
% 3-body resonances

= poles of #(q; E, EA) as a function of £
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Deform the contour so as
NOT to cross any
singularities of the integrand
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Poles of dressed A.” prop.
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Detorming contour

% Solid line: contour in omega plane

% Thick line: square root cut

% Dashed line: ¢(I; £, B) cut as a func. of /
% Cross: poles of dressed prop.

% Be wary of “standard” procedures (e.g. Peace & Afnan)
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3-body resonance pole
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3B pole trajectory as a varies, with |7 as unit

@ |rlla=-4~ -1




Results

(BwL ’16)

3
Mps — M+ = 305.8MeV, h* = S 0.36  (CDF ’11)

Wﬂzc,%

Myns 1) — (M, +2m,) = (—0.45 — 0.02;)MeV

Mps — Myr = 308.7MeV, h%= ; % 0.30  (Chiladze & Falk ’97)

My (pps 1y — (M, +2m) = (4.00 — 5.72i)MeV
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The decay of X(rmX¥,, 5) into Afw 7t
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Summary

A(2595)" a near-threshold S-wave resonance coupled to n.

Strong attraction of very soft pions to 2. : A extremely rare
realization of S-wave resonant interaction with both large a and r

Thanks to chiral symmetry, only one fine-tuning needed
It helps form a shallow 72 resonance

More molecular states with this soft-pion attraction?



