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Outline

Why do we study πΣc  system? 

What is ChEFT (in a nutshell)? 

How do we go about a system with very soft pions? 

What happens if we throw two pions at Σc? 

Have we seen the proposed ππΣc resonance?



Λc(2595)+ as an S-wave resonance in πΣc channel

1~2 MeV above threshold — extremely shallow 

Width ∼ 2MeV — narrow 

Strong attraction (I=0, L=0) between Σc and a very 

soft pion (Q ~ 20MeV) 

Pion mass diff. ignored for the moment  

Can a Σc trap two soft pions?

CHARMED BARYONS

Revised March 2012 by C.G. Wohl (LBNL).

There are 17 known charmed baryons, and four other

candidates not well enough established to be promoted to the

Summary Tables.∗ Fig. 1(a) shows the mass spectrum, and for

comparison Fig. 1(b) shows the spectrum of the lightest strange

baryons. The Λc and Σc spectra ought to look much like the Λ

and Σ spectra, since a Λc or a Σc differs from a Λ or a Σ only

by the replacement of the s quark with a c quark. However,

a Ξ or an Ω has more than one s quark, only one of which is

changed to a c quark to make a Ξc or an Ωc. Thus the Ξc and

Ωc spectra ought to be richer than the Ξ and Ω spectra.∗∗
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Fig. 1. (a) The known charmed baryons, and (b) the lightest “4-star” strange baryons. Note that

there are two JP = 1/2+ Ξc states, and that the lightest Ωc does not have J = 3/2. The JP = 1/2+

states, all tabbed with a circle, belong to the SU(4) multiplet that includes the nucleon; states with

a circle with the same fill belong to the same SU(3) multiplet within that SU(4) multiplet. Similar

remarks apply to the other states: same shape of tab, same SU(4) multiplet; same fill of that shape,

same SU(3) multiplet. The JP = 1/2− and 3/2− states tabbed with triangles complete two SU(4) 4̄

multiplets.

Before discussing the observed spectra, we review the theory

of SU(4) multiplets, which tells what charmed baryons to

expect; this is essential, because few of the spin-parity values

given in Fig. 1(a) have been measured. Rather, they have been

assigned in accord with expectations of the theory. However,

they are all very likely as shown (see below).

SU(4) multiplets—Baryons made from u, d, s, and c quarks

belong to SU(4) multiplets. The multiplet numerology, analo-

gous to 3×3×3 = 10+81+82+1 for the subset of baryons made

from just u, d, and s quarks, is 4 × 4 × 4 = 20 + 20 ′
1 + 20 ′

2 + 4̄.

Figure 2(a) shows the 20-plet whose bottom level is an SU(3)

decuplet, such as the decuplet that includes the ∆(1232). Fig-

ure 2(b) shows the 20 ′-plet whose bottom level is an SU(3)

octet, such as the octet that includes the nucleon. Figure 2(c)

shows the 4̄ multiplet, an inverted tetrahedron. One level up

from the bottom level of each multiplet are the baryons with

one c quark. All the baryons in a given multiplet have the same

spin and parity. Each N or ∆ or SU(3)-singlet-Λ resonance

calls for another 20 ′- or 20- or 4̄-plet, respectively.

I=0 I=1



(very) Brief intro to Chiral EFT

QCD pert. theory

Lattice QCD

Chiral EFT

Few GeVs

~ 1 GeV

3-momenta

~ Few MeVs



Chiral symmetry

Approximate symmetry SU(3)L×SU(3)R of QCD Lagrangian

Flavor u d s

Charge [e] 2/3 −1/3 −1/3

Mass [MeV] 1.5 − 3.3 3.5 − 6.0 70 − 130

Flavor c b t

Charge [e] 2/3 −1/3 2/3

Mass [GeV] 1.27+0.07
−0.11 4.20+0.17

−0.07 171.2 ± 2.1

Table 2: Quark flavors and their charges and masses. See [Manohar and Sachrajda, 2008] for details.

Suppressing the Dirac spinor index and introducing for each quark flavor f a color triplet

qf =

⎛

⎜⎝
qf,1

qf,2

qf,3

⎞

⎟⎠ , (2)

the gauge principle is applied with respect to the group SU(3), i.e., all qf are subject to the same local
SU(3) transformation:

qf "→ q′f = exp

(

−i
8∑

a=1

Θa
λc

a

2

)

qf = Uqf , (3)

where the eight λc
a denote Gell-Mann matrices acting in color space and the Θa are smooth, real functions

in Minkowski space. Whenever convenient, we will make use of the summation convention implying a
summation over repeated indices. Introducing eight gauge potentials Aaµ, transforming as

Aµ ≡ Aaµ
λc

a

2
"→ A′

µ = UAµU
† +

i

g3
∂µUU †, (4)

the covariant derivative of the quark field, by construction, transforms as the quark field:

Dµqf ≡ (∂µ + ig3Aµ)qf "→ (Dµqf)
′ = D′

µq
′
f = UDµqf . (5)

In Eq. (5), g3 denotes the strong coupling constant. In order to treat the gauge potentials as dynamical
degrees of freedom, one defines a generalization of the field strength tensor to the non-Abelian case as

Gaµν = ∂µAaν − ∂νAaµ − g3fabcAbµAcν, (6)

where, suppressing the superscript c in the Gell-Mann matrices, the standard totally antisymmetric
SU(3) structure constants are given by (see Table 3)

fabc =
1

4i
Tr([λa,λb]λc). (7)

Given Eq. (4), the field strength tensor transforms under SU(3) as

Gµν ≡ Gaµν
λc

a

2
"→ UGµνU

†. (8)

The QCD Lagrangian obtained by applying the gauge principle to the free Lagrangian of Eq. (1), finally,
reads

LQCD =
∑

f= u,d,s,
c,b,t

q̄f(iD/ − mf )qf − 1

4
GaµνGµν

a . (9)

5

abc 123 147 156 246 257 345 367 458 678

fabc 1 1
2 −1

2
1
2

1
2

1
2 −1

2
1
2

√
3 1

2

√
3

Table 3: Totally antisymmetric non-vanishing structure constants of SU(3): [λa

2 , λb

2 ] = ifabc
λc

2 .

From the point of view of gauge invariance the strong-interaction Lagrangian could also involve a
term of the type

Lθ =
g2
3 θ̄

64π2
ϵµνρσGµν

a Gρσ
a , ϵ0123 = 1, (10)

where ϵµνρσ denotes the totally antisymmetric Levi-Civita tensor. The so-called θ term of Eq. (10)
implies an explicit P and CP violation of the strong interactions which, for example, would give rise to
an electric dipole moment of the neutron. The present empirical information indicates that the θ term
is small and, in the following, we will omit Eq. (10) from our discussion.

2.1.2 Chiral limit

The terminology chiral limit refers to massless quarks, resulting in an important additional global
symmetry of the QCD Lagrangian which will be discussed in the following. We introduce the chirality
matrix γ5 = γ5 = iγ0γ1γ2γ3 = γ†5, {γµ, γ5} = 0, γ2

5 = , and define the projection operators

PL =
1

2
( − γ5) = P †

L, PR =
1

2
( + γ5) = P †

R. (11)

These operators satisfy the completeness relation PL + PR = , are idempotent, P 2
L = PL, P 2

R = PR,
and respect the orthogonality relations PLPR = PRPL = 0. When applied to the solutions of the
free massless Dirac equation, the operators PR and PL project to the positive and negative helicity
eigenstates, hence the subscripts R and L for right-handed and left-handed, respectively.

Omitting color and flavor indices, we introduce left- and right-handed quark fields as

qL = PLq and qR = PRq. (12)

A quadratic form containing any of the 16 independent 4 × 4 matrices { , γµ, γ5, γµγ5, σµν} can be
decomposed as

q̄ Γiq =

{
q̄LΓ1qL + q̄RΓ1qR for Γ1 ∈ {γµ, γµγ5}
q̄RΓ2qL + q̄LΓ2qR for Γ2 ∈ { , γ5, σµν} , (13)

where
q̄R = q̄PL and q̄L = q̄PR.

The validity of Eq. (13) is general and does not refer to “massless” quark fields.
From a phenomenological point of view the u and d quarks and to a lesser extent also the s quark

have relatively small masses in comparison to a typical hadronic scale of the order of 1 GeV. On the other
hand, we will neglect the three heavy quarks c, b, and t, because we will restrict ourselves to energies
well below the production threshold of particles containing a heavy (anti-) quark. In the following,
we will approximate the full QCD Lagrangian by its light-flavor version, and will consider the chiral
limit for the three light quarks u, d, and s. To that end, we apply Eq. (13) to the term containing the
contraction of the covariant derivative with γµ. This quadratic quark form decouples into the sum of
two terms which connect only left-handed with left-handed and right-handed with right-handed quark
fields. The QCD Lagrangian in the chiral limit can then be written as

L0
QCD =

∑

l=u,d,s

(q̄R,liD/ qR,l + q̄L,liD/ qL,l) −
1

4
GaµνGµν

a . (14)

6

Quark masses mf → 0
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µ⌫} can be decomposed as

q̄�iq =
⇢
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µ⌫}, (13)

where
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From a phenomenological point of view, the u and d quarks and, to a lesser extent, also the s quark have relatively small

masses in comparison to a typical hadronic scale of the order of 1 GeV. On the other hand, we will neglect the three heavy
quarks c , b, and t , because we will restrict ourselves to energies well below the production threshold of particles containing
a heavy (anti-) quark. In the following, we will approximate the full QCD Lagrangian by its light-flavor version, and will
consider the chiral limit for the three light quarks u, d, and s. To that end, we apply Eq. (13) to the term containing the
contraction of the covariant derivative with � µ. This quadratic quark form decouples into the sum of two terms which
connect only left-handed with left-handed and right-handed with right-handed quark fields. The QCD Lagrangian in the
chiral limit can then be written as

L0
QCD =

X
l=u,d,s

(q̄R,li 6D qR,l + q̄L,li 6D qL,l) � 1
4

Gaµ⌫G
µ⌫
a . (14)

Note that, because of Eq. (13), the quark-mass term generates a coupling between left- and right-handed quark fields.

2.1.3. Global symmetry currents of the light quark sector
Due to the flavor independence of the covariant derivative, L0

QCD is invariant under the infinitesimal global transforma-
tions of the left- and right-handed quark fields,

qL ⌘
 uL
dL
sL

!
7!

 
1� i

8X
a=1

✏L
a
�a

2
� i✏L

!
qL,

qR ⌘
 uR
dR
sR

!
7!

 
1� i

8X
a=1

✏R
a
�a

2
� i✏R

!
qR. (15)

Note that the Gell-Mannmatrices act in flavor space.L0
QCD is said to have a classical globalU(3)L⇥U(3)R symmetry. Applying

Noether’s theorem [21–23], from such an invariance, one would expect a total of 2 ⇥ (8 + 1) = 18 conserved currents:

Lµ
a = q̄L� µ �a

2
qL, Lµ = q̄L� µqL, Rµ

a = q̄R� µ �a

2
qR, Rµ = q̄R� µqR. (16)

Making use of

PL� µPR ± PR� µPL =
⇢
� µ

� µ�5,

we introduce the linear combinations

Vµ
a = Rµ

a + Lµ
a = q̄� µ �a

2
q, (17)

Aµ
a = Rµ

a � Lµ
a = q̄� µ�5

�a

2
q, (18)
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(   )SU(3)L
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qL ⌘
 uL
dL
sL

!
7!

 
1� i

8X
a=1

✏L
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�a

2
� i✏L

!
qL,

qR ⌘
 uR
dR
sR

!
7!

 
1� i

8X
a=1

✏R
a
�a

2
� i✏R

!
qR. (15)

Note that the Gell-Mannmatrices act in flavor space.L0
QCD is said to have a classical globalU(3)L⇥U(3)R symmetry. Applying

Noether’s theorem [21–23], from such an invariance, one would expect a total of 2 ⇥ (8 + 1) = 18 conserved currents:

Lµ
a = q̄L� µ �a

2
qL, Lµ = q̄L� µqL, Rµ

a = q̄R� µ �a

2
qR, Rµ = q̄R� µqR. (16)

Making use of

PL� µPR ± PR� µPL =
⇢
� µ

� µ�5,

we introduce the linear combinations

Vµ
a = Rµ

a + Lµ
a = q̄� µ �a

2
q, (17)

Aµ
a = Rµ

a � Lµ
a = q̄� µ�5

�a

2
q, (18)
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Pion-baryon interactions

Pion-baryon interactions constrained by spontaneous broken 
chiral symmetry 

i

f2
⇡

⌃a† �⇡a⇡̇b � ⇡b⇡̇a
�
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• Coupling constants may be fixed, e.g. Weinberg-Tomozawa for Σc  

near-threshold S-wave pion-baryon resonances, as long as
Δ ≪

ffiffiffiffiffiffi
4π

p
fπ ≃ 328 MeV. The mechanism is that chiral

symmetry requires that a rather large (but not diverging)
value be taken by the effective range r by constraining how
the excited baryon is coupled in the S wave to the pion-
baryon continuum. For mπ close to m⋆

π ≃ Δ, the leading-
order (LO) value of r is found to be

r ¼ −
4πf2π
h2m3

π
; ð1Þ

where the pion decay constant fπ ¼ 92.4 MeV; h is the
dimensionless coupling constant of the resonance to the
pion-baryon system and it is assumed to be of the order
of unity.
But there is still one fine-tuning remaining: mπ close to

m⋆
π , ðm⋆

π −mπÞ → 0. A second motivation for this line of
research is to study how this fine-tuning is propagated
through hadronic systems. (A precedent of such inves-
tigations is the real-world nucleon-nucleon system, whose
large values of scattering lengths are suspected to result
from the physical pion mass being in close proximity to a
critical value [15].) In the immediate neighborhood of m⋆

π ,
many dimensionful quantities scale only with ðmπ −m⋆

πÞ, a
rule known as universality [16]. However, the simultaneous
emergence of two large length scales, a and r, by a single
fine-tuning ðm⋆

π −mπÞ → 0 invalidates the universality
relations that account for only the large value of a. I use
the binding energy to demonstrate how r affects the
threshold physics.
Two-flavor chiral symmetry suffices to demonstrate the

points I make. Regardless of the isospin of the S-wave
resonance, the lowest-order coupling of the resonance to
the pion baryon must involve one time derivative on the
pion field. Ensured by chiral symmetry and parity con-
servation, this is the single most important feature of an
S-wave baryon resonance, and it is the foundation of what
is developed here. The heavy-baryon Lagrangian terms
with Weinberg’s chiral index [17,18] ν ¼ 0 are

Lð0Þ ¼ Σa†
"
i∂0δab þ

i
f2π

ðπa _πb − πb _πaÞ
#
Σb

þΨ†ði∂0 − ΔÞΨþ i
gΣ
fπ

ϵabcΣa†~σ · ~∇πbΣc

þ hffiffiffi
3

p
fπ

ðΣa† _πaΨþ H:c:Þ þ % % % ð2Þ

Here Ψ (Σ) is the field that annihilates Λþ
c ð2595Þ

[Σcð2455Þ] and gΣ the axial coupling of Σcð2455Þ.1

Now we turn to construction of the S-wave amplitude for
πΣc elastic scattering. When mπ is near m⋆

π, either below or
above, Λþ

c ð2595Þ remains a near-threshold phenomenon
and the pion is nonrelativistic. Therefore, k and the energy
shift of the resonance from threshold δ≡ Δ −mπ are both
much smaller than mπ: k=mπ ≪ 1 and jδj=mπ ≪ 1. The
recoil effects of the pion are systematically included,
whereas those of the baryon are considered here, due to
its much larger mass.
While more formal treatments of heavy pions can be

found in Refs. [19–21], I choose to use the usual ChPT
framework in which the pions are created and/or annihi-
lated by a relativistic field.
With the incoming (outgoing) 4-momentum of π denoted

by kμ (k0μ) and that of Σc by pμ (p0
μ), I write the isoscalar

S-wave πΣc potentials as the following two pieces: The
s-channel exchange of Ψ is

vs ¼
h2

f2π

k0k00
k0 þ p0 − Δ

¼ h2m2
π

f2πðE − δÞ

"
1þO

$
Q2

m2
π

%#
; ð3Þ

where E is the CM energy, and the Weinberg-Tomozawa
(WT) term

vWT ¼ 3ðk0 þ k00Þ
2f2π

¼ 3mπ

f2π

"
1þO

$
Q2

m2
π

%#
: ð4Þ

The u-channel exchanges of Σ or Ψ are not considered
because they involve two powers ofQ, and are thus smaller
than vWT by OðQ2=m2

πÞ, where Q denotes generically
external momenta.
Resummation of vs gives rise to the desired nonpertur-

bative physics, but an argument for its necessity in the
power-counting language helps us understand theoretical
uncertainties of theEFT-based conclusions [22–24]. Figure 1
shows two insertions of vs, connected by a pion-baryon
loop. When E − δ in the denominator of vs is as small as the
Ψ self-energy, all diagrams with serial insertions of vs are
equally important, hence the resummation.
Let us first power count the nonrelativistic pion-baryon

loop, shown as part of Fig. 1. The fact that the pion is
nonrelativistic modifies in several respects the standard
power counting [17]. The 3-momentum of the pion internal
line is of Q and the energy mπ þQ2=mπ; therefore, the
pion propagator is counted as 1=Q2. The baryon propagator
is static, and the energy flowing through it is of the same
order as the kinetic energy of the pion. So the baryon
propagator is counted as mπ=Q2. With the internal pion

FIG. 1. Once iterated s-channel exchange of Ψ in πΣc scatter-
ing. The solid, dashed, and double lines represent Σc, π, and Ψ,
respectively.

1The D-meson-nucleon system can be integrated out here
because DN has to be quite off shell to be relevant, with the CM
momentum around

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μΔDN

p ≃ 510 MeV, where μ is the reduced
mass of DN and ΔDN is the CM energy difference between
Λþ
c ð2595Þ and the DN threshold.
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FIG. 8. Binding energies of the spurious bound states in selected
attractive triplet channels, before the introduction of the required
counterterms.

at other energies are cutoff independent for ! >∼ 8 fm−1.
Figures 11 and 12 summarize the analogous results for the
3P2-3F2 and 3D2 partial waves, respectively. The fits were
performed using the 3P2 phase shift at 50 MeV and the 3D2
phase shift at 100 MeV. We confirm the cutoff independence
(for large !) in all phase shifts and mixing parameters.

An alternative to absorbing the cutoff dependence in
the various P waves individually would be to employ one
counterterm with tensor structure. Unfortunately, we have not
been able to implement this idea without introducing cutoff
dependence in the 3P1 wave.

After removing the cutoff dependence by adding appro-
priate counterterms, we still find spurious bound states in
the 3P0,

3 D2, and also the 3S1-3D1 channels. However, the
cutoff dependence of the binding energies is now completely
different, as shown in Fig. 13. As desired, only 3S1-3D1 has a
shallow bound state, the deuteron, which is cutoff independent
over almost the entire ! range; the deuteron binding energy is
predicted to be 1.92 MeV in this LO calculation. The bound
states in the other channels are all very deep. A new bound
state appears with infinite binding energy around the cutoff
at which the corresponding counterterm is singular, and then
approaches a constant, large binding energy for increasing !.

These bound states are beyond the range of the EFT, and they
are irrelevant for the low-energy physics.

With the added counterterms, we obtain a very decent
description of the phase shifts. Figure 14 shows that our 3P0
result follows the energy dependence of the Nijmegen PWA
remarkably well. Obviously, the addition of the counterterm
is here supported by the experimental data. In the coupled
3P2-3F2 channels the agreement with the PWA below 50 MeV
is still satisfactory. We emphasize that the 3F2 phase and
the mixing parameter ε2 are predictions. Choosing a high
cutoff ! clearly does not compromise the description of these
observables

For the 3D2 phase (see Fig. 15), we find again a good
agreement with the PWA. Here, we also included the prediction
based on a calculation without a counterterm, for ! =
8.0 fm−1 in the plateau region of Fig. 9. For low energies below
50 MeV, the results are comparable. The deviations from the
PWA become significant toward higher energies, where the
plateau seen in Fig. 9 is more and more tilted. For these higher
energies, the counterterm again improves the predictions.

Our overview is completed in Figs. 15 and 16 with the
3D3-3G3,

3 F4-3H4, and 3G4 channels. In these partial waves
there is a relatively small cutoff dependence in the ! range
that we studied (although presumably cutoff dependence will
become significant at cutoffs high enough to bring in spurious
bound states). In all cases the agreement with the PWA is
improved when we increase the cutoff from the traditional
values around 2.5 fm−1 [16] to our higher values. This is
especially true for the 3D3 partial wave, which, for our higher
cutoffs, becomes attractive for higher energies.

After these encouraging results, we examine the 3N bound
state in the next section.

IV. THREE-NUCLEON BOUND STATE

The power of EFT comes to bear when more nucleons
are considered. The 3N system is the first extension to
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at other energies are cutoff independent for ! >∼ 8 fm−1.
Figures 11 and 12 summarize the analogous results for the
3P2-3F2 and 3D2 partial waves, respectively. The fits were
performed using the 3P2 phase shift at 50 MeV and the 3D2
phase shift at 100 MeV. We confirm the cutoff independence
(for large !) in all phase shifts and mixing parameters.

An alternative to absorbing the cutoff dependence in
the various P waves individually would be to employ one
counterterm with tensor structure. Unfortunately, we have not
been able to implement this idea without introducing cutoff
dependence in the 3P1 wave.

After removing the cutoff dependence by adding appro-
priate counterterms, we still find spurious bound states in
the 3P0,

3 D2, and also the 3S1-3D1 channels. However, the
cutoff dependence of the binding energies is now completely
different, as shown in Fig. 13. As desired, only 3S1-3D1 has a
shallow bound state, the deuteron, which is cutoff independent
over almost the entire ! range; the deuteron binding energy is
predicted to be 1.92 MeV in this LO calculation. The bound
states in the other channels are all very deep. A new bound
state appears with infinite binding energy around the cutoff
at which the corresponding counterterm is singular, and then
approaches a constant, large binding energy for increasing !.

These bound states are beyond the range of the EFT, and they
are irrelevant for the low-energy physics.

With the added counterterms, we obtain a very decent
description of the phase shifts. Figure 14 shows that our 3P0
result follows the energy dependence of the Nijmegen PWA
remarkably well. Obviously, the addition of the counterterm
is here supported by the experimental data. In the coupled
3P2-3F2 channels the agreement with the PWA below 50 MeV
is still satisfactory. We emphasize that the 3F2 phase and
the mixing parameter ε2 are predictions. Choosing a high
cutoff ! clearly does not compromise the description of these
observables

For the 3D2 phase (see Fig. 15), we find again a good
agreement with the PWA. Here, we also included the prediction
based on a calculation without a counterterm, for ! =
8.0 fm−1 in the plateau region of Fig. 9. For low energies below
50 MeV, the results are comparable. The deviations from the
PWA become significant toward higher energies, where the
plateau seen in Fig. 9 is more and more tilted. For these higher
energies, the counterterm again improves the predictions.

Our overview is completed in Figs. 15 and 16 with the
3D3-3G3,

3 F4-3H4, and 3G4 channels. In these partial waves
there is a relatively small cutoff dependence in the ! range
that we studied (although presumably cutoff dependence will
become significant at cutoffs high enough to bring in spurious
bound states). In all cases the agreement with the PWA is
improved when we increase the cutoff from the traditional
values around 2.5 fm−1 [16] to our higher values. This is
especially true for the 3D3 partial wave, which, for our higher
cutoffs, becomes attractive for higher energies.

After these encouraging results, we examine the 3N bound
state in the next section.

IV. THREE-NUCLEON BOUND STATE

The power of EFT comes to bear when more nucleons
are considered. The 3N system is the first extension to
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Special kinematics may change PC

I. INTRODUCTION

As far as one-baryon processes are concerned, baryons have always been approximated as static

objects at leading order in heavy-baryon chiral perturbation theory (HBChPT), and recoil cor-

rections are treated as subleading perturbations [1]. However, the phenomenological successes of

covariant approaches, in which recoil corrections are in e↵ect resummed to all orders, challenged

this point of view [2–11]. The initial theoretical rationale for covariant treatment of baryons comes

from Ref. [2] (also touched upon in Refs. [12, 13]), in which the pion-baryon triangle diagram was

examined. Figure 1 shows the said diagram, where p is the incoming 4-momentum of the baryon

and q the momentum transfer. With di↵erent vertexes, this diagram contributes to various pro-

cesses. In particular, when both baryonic external lines are on-shell the diagram contributes to

most nucleon form factors, and the loop integral is a function of t ⌘ q

2 = q

2
0 � ~q

2.

If the baryon is represented by the Dirac field, the triangle diagram can be shown to have

a branch-point singularity in the second Riemann sheet of t, an example of so-called anomalous

threshold [14–17]. Reference [2] argued that the static-limit approximation is not aware of this

second-sheet singularity, so a Lorentz-invariant treatment, or at least resummation of the recoil

correction in HBChPT, is necessary.

However, from a more puristic point of view toward e↵ective field theory (EFT), symmetries

and degrees of freedom are the only constraints one must stand by. Whenever resummation of a

certain class of diagrams is deemed necessary, power counting must reflect the equal importance

of these diagrams. Along this line of thinking, if the anomalous threshold in the triangle diagram

does turn out to account for important physics, one would like such an analytic structure to come

out of the power counting, not the other way around.

We will show that a peculiarity of kinematics in the region centered around the two-pion cut

t = 4m2
⇡, where m⇡ is the pion mass, allows the baryon propagator to be unexpectedly close to its

mass shell. This eventually leads to the loop integral being enhanced by O(mN/m⇡), compared

k

q

k-q

P P+q

FIG. 1: The triangle diagram analyzed in the present paper. The solid (dashed) line represents the baryon

(pion). The wavy line represents possible probes allowed by symmetries.

2

q2 ≃ 4mπ2 ⇒ unphysical region,  
    taking complex values

Power counting à la Weinberg [21] tries to capture long-range physics represented by a loop

diagram, by inspecting contributions from virtual three-momenta that push at least a subset of

the propagators near their mass shell. When both pion propagators are on-shell, q and k satisfy

the following equations:

k0 =
q
~

k

2 +m

2
⇡ , (3)

2~k · ~q � ~q

2 � 2q0

q
~

k

2 +m

2
⇡ + q

2
0 = 0 . (4)

Since q0 ' ~q

2
/2mN , ~k is found to a first approximation to be collinear with ~q, plus corrections in

powers of 1/mN :

~

k =
~q

2
+O

✓
~q

2

mN

◆
, (5)

and

k0 =
p
~q

2 +m

2
⇡


1 +O

✓
~q

2

mN

◆�
. (6)

Reasoning of the standard ChPT counting starts by assuming external three-momenta to be

of the same order as the pion mass: Q ⇠ m⇡, where we have used Q to denote generically the

size of external three-momenta. Since the integral has dimension [mass]�1, loop momenta with

|~k| � Q do not contribute appreciably. Therefore, the meaningful integration volume of d3k must

be of order Q

3. In the physics region where ~q

2
> 0 and |~q | ⇠ m⇡ ⇠ Q, the volume of dk0 and

k0 itself are too of order Q, according to Eq. (6). It follows immediately that the denominator of

the baryon propagator is controlled by k0 ⇠ Q, whereas the recoil correction ~

k

2
/2mN ⇠ Q

2
/mN

is subleading. Therefore, the static limit is justified. With the baryon propagator and the pion

propagators being counted respectively as Q�1 and Q

�2, we arrive at the standard counting that

the loop integral (2) is of order Q�1.

While the above argument covers the generic case of ~q 2 ⇠ m

2
⇡, it, however, needs modification

for peculiar cases defined by special values of ~q 2. Pertinent to our concern in the present paper is

the unphysical region where

~q

2 = �4m2
⇡ +O(⇠2m2

⇡) and ⇠ ⌘ m⇡/mN ⌧ 1 ; (7)

therefore, t is near the two-pion cut

t = 4m2
⇡ +O(⇠2m2

⇡) . (8)

The condition (4) still holds, that the most important ~k-modes are those around ~q/2. Now that ~q

may take complex values, ~k may do too, and in turn ~

k

2 may be negative. So it is not surprising

4

Pions near shell ⇒             , cancellation between      and mπ2~k ⇠ ~q

2

~q

~k2
that there exists a small region of ~k centered around ~q/2 in which the pion energy takes a value

smaller than m⇡ by O(m⇡/mN ):

|~k � ~q

2
| ⇠ ⇠m⇡ , k0 ⇠

q
~

k

2 +m

2
⇡ ⇠ ⇠m⇡ ,

q
(~k � ~q )2 +m

2
⇡ ⇠ ⇠m⇡ , (9)

where we have used ~q

2 ' �4m2
⇡. This is a small region of k, with volume

Z
d

4
k ⇠ (⇠m⇡)

4
, (10)

but all of the three propagators are significantly enhanced because they are very close to their

mass shell. Firstly, k0 in the denominator of the baryon propagator is now of order ⇠m⇡, so the

recoil correction ~

k

2
/2mN ⇠ ⇠m⇡ can no longer be considered subleading. It follows that the baryon

propagator scales as

⇠ 1

k0 � ~k2
2mN

⇠ 1

⇠m⇡
. (11)

Secondly, but perhaps more importantly, using Eq. (9) and q0 ⇠ ⇠m⇡, we find that the o↵-shellness

of pion propagators is even smaller / ⇠

2, so the pion propagators scale as

⇠ 1

k

2 �m

2
⇡
⇠ 1

(k � q)2 �m

2
⇡
⇠ 1

(⇠m⇡)2
. (12)

Therefore, the integral in Eq. (2) scales as

(⇠m⇡)
4 1

⇠m⇡

1

(⇠m⇡)2
1

(⇠m⇡)2
⇠ 1

⇠m⇡
. (13)

The key here is that the tiny o↵-shellness of all three propagators more than makes up for the

smallness of the integration measure, so the integral as whole is enhanced.

To summarize, we find that when t is within a small window around 4m2
⇡, |t�4m2

⇡| . ⇠

2
m

2
⇡, the

loop integral is ⇠ (⇠m⇡)�1, enhanced by a factor of O(mN/m⇡) as opposed to the aforementioned

generic counting. Here the static limit is not a legitimate approximation taken by the baryon

propagator: the leading recoil term �~k2/2mN must be retained in Eq. (2). The resummation of

�~k2/2mN immediately reproduces the anomalous threshold [2], as it was rather anticipated.

III. NUMERICS

A. Contours

We evaluate numerically the integral (2) with only the first recoil term kept in the baryon

propagator: (k0�~

k

2
/2mN )�1. A Feynman parameter is first used to combine the pion propagators

5

that there exists a small region of ~k centered around ~q/2 in which the pion energy takes a value

smaller than m⇡ by O(m⇡/mN ):

|~k � ~q

2
| ⇠ ⇠m⇡ , k0 ⇠
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q
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2
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Overall, enhanced by ~ mN/mπ, compared with standard ChPT counting

(Lyu and Long ’16 )
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Λc(2595)+ as an S-wave resonance in πΣc channel

1~2 MeV above threshold — extremely shallow 

Width ∼ 2MeV — narrow 

Strong attraction (I=0, L=0) between Σc and a very 

soft pion (Q ~ 20MeV) 

Pion mass diff. ignored for the moment  

Can a Σc trap two soft pions?

CHARMED BARYONS

Revised March 2012 by C.G. Wohl (LBNL).

There are 17 known charmed baryons, and four other

candidates not well enough established to be promoted to the

Summary Tables.∗ Fig. 1(a) shows the mass spectrum, and for

comparison Fig. 1(b) shows the spectrum of the lightest strange

baryons. The Λc and Σc spectra ought to look much like the Λ

and Σ spectra, since a Λc or a Σc differs from a Λ or a Σ only

by the replacement of the s quark with a c quark. However,

a Ξ or an Ω has more than one s quark, only one of which is

changed to a c quark to make a Ξc or an Ωc. Thus the Ξc and

Ωc spectra ought to be richer than the Ξ and Ω spectra.∗∗
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Fig. 1. (a) The known charmed baryons, and (b) the lightest “4-star” strange baryons. Note that

there are two JP = 1/2+ Ξc states, and that the lightest Ωc does not have J = 3/2. The JP = 1/2+

states, all tabbed with a circle, belong to the SU(4) multiplet that includes the nucleon; states with

a circle with the same fill belong to the same SU(3) multiplet within that SU(4) multiplet. Similar

remarks apply to the other states: same shape of tab, same SU(4) multiplet; same fill of that shape,

same SU(3) multiplet. The JP = 1/2− and 3/2− states tabbed with triangles complete two SU(4) 4̄

multiplets.

Before discussing the observed spectra, we review the theory

of SU(4) multiplets, which tells what charmed baryons to

expect; this is essential, because few of the spin-parity values

given in Fig. 1(a) have been measured. Rather, they have been

assigned in accord with expectations of the theory. However,

they are all very likely as shown (see below).

SU(4) multiplets—Baryons made from u, d, s, and c quarks

belong to SU(4) multiplets. The multiplet numerology, analo-

gous to 3×3×3 = 10+81+82+1 for the subset of baryons made

from just u, d, and s quarks, is 4 × 4 × 4 = 20 + 20 ′
1 + 20 ′

2 + 4̄.

Figure 2(a) shows the 20-plet whose bottom level is an SU(3)

decuplet, such as the decuplet that includes the ∆(1232). Fig-

ure 2(b) shows the 20 ′-plet whose bottom level is an SU(3)

octet, such as the octet that includes the nucleon. Figure 2(c)

shows the 4̄ multiplet, an inverted tetrahedron. One level up

from the bottom level of each multiplet are the baryons with

one c quark. All the baryons in a given multiplet have the same

spin and parity. Each N or ∆ or SU(3)-singlet-Λ resonance

calls for another 20 ′- or 20- or 4̄-plet, respectively.

I=0 I=1



Shallow, narrow S-wave resonances
V

r

ER  →

V1

V2

Resonance ≈ a would-be bound state coupled to continuum 

Shallow ⇒ tuning V1 so ER → 0 

Narrow  
⇒ tuning V2 , weakly coupled to continuum, so width → 0 

Less tuning for higher partial waves, because of centrifugal barriers

wave func.



S-wave resonance poles

k

f (0) =
1

� 1
a + r

2k
2 � ik

bound state

Virtual

=1/r

Fixing r and 
tuning a

Effective range 
expansion :

In higher waves, two poles 
meet at threshold 

Λc(2595)+ (Λc*) shallow and 
narrow ⇒ both r and a are 
large

(Hyodo ’13)
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Fig. 1. One of the one-loop diagram contributing to pion-nucleon scattering. The solid (dashed)

line represents the nucleon (pion).

Both vertexes in Fig. 1 are the famous Weinberg-Tomozawa term, the second
operator in Lagrangian (1), contributing a factor of Q/f2

⇡ . The pion propagator
scales as Q�2. With the nucleon mass subtracted o↵ from the zeroth component of
4-momenta, as conventionally done in heavy-baryon formalism, the nucleon external
momentum is of (Q2/mN , Q). But the momentum following through the nucleon
internal line is of (Q,Q), because the external pion line tends to inject an energy
at least of m⇡. So the nucleon internal line is of the size Q�1. The integration
volume contributes a factor of Q4/(16⇡2). The numerical coe�cient 16⇡2 usually
accompanies an integral in which the pion is relativistic, l

0

⇠ |~l |. Its value should
be taken with a grain of salt, for it comes from observations rather than rigorous
deductions. In conclusion, the size of the diagram is estimated as

Q

f2

⇡

✓
Q

4⇡f⇡

◆
2

. (2)

In the loop integral, there may be other momentum modes of l causing one of
the two propagators (or both) to be enhanced, compared with the factor of Q�2 for
the pion and Q�1 for the nucleon. However, these modes are so special that they
reside only in a small integration volume. For instance, when l

0

is near the energy
of the incoming pion k

0

, the nucleon propagator is very close to its mass shell so
that it is of the size (Q2/mN )�1. But this enhancement of the nucleon propagator
only happens to a small window of the integration volume |l

0

� k
0

| ⇠ Q2/mN , so
power counting (2) is not altered.

By comparison, special kinematic regions of external momenta often call for
more cautions. For instance, power counting in Fig. 1 needs to be modified when the
incoming pion is nonrelativistic in the sense that its 3-momentum is much smaller
than the pion mass, Q ⌧ m⇡. For a recent interesting application of nonrelativistic
pion in pion-baryon processes, see Ref. 38.

2.2. Two-nucleon processes

Processes involving two nonrelativistic nucleons, as is the case in low-energy nuclear
physics, present more dramatic changes in Q-calculus. Figure 2 shows a generic loop
diagram with two-nucleon intermediate states. Denoting the 4-momentum of one of
the nucleon internal lines as (E/2 + l

0

,~l ), with E being the center-of-mass energy,
we can write schematically the loop integral as

Z
d4l

(2⇡)4
· · · i

E
2

+ l
0

� ~l2

2mN

i
E
2

� l
0

� ~l2

2mN

· · · (3)

WT ~ mπ/fπ2 

A pion loop always suppressed by                    → no good reason to resum  

A zero-range pot. subject to renormalization, δ(3)(r), coupling constant not 
fixed by symmetry → resummation of WT facing issue of renormalization 

It’s unlikely that WT alone can generate a near-threshold S-wave 
resonance 

“Subleading”            highly enhanced by QCD dynamics

✓
Q

4⇡f⇡

◆2

Generated by Weinberg-Tomozawa?

⇡⇡⌃⌃



Explicit field of Λc(2595)+

Ψ: Λc*  

h:  O(1)

Ψ coupled to the S wave of πΣc  → time derivative on π (chiral 
symmetry, crucial!) 

δ ~ 1MeV above πΣc threshold 

Small pion momenta, Q ~ 20MeV → k0 = mπ + O(k2/mπ)   

Σc decay width ~ 2MeV, approximated as stable

FIG.1:Onceiterateds-channelexchangeof in⇡⌃cscattering.Thesolid,dashed,anddouble

linesrepresent⌃c,⇡,and ,respectively.

included,thoseofthebaryonwillnotbeforsimplicity,duetoitsmuchlargermass.

Withtheincoming(outgoing)4-momentumof⇡denotedbyk(k0)whilethatof⌃cbyp

(p0),IwritetheisoscalarS-wave⇡⌃c“potentials”asthefollowingtwopieces:Thes-channel

exchangeof is

vs=
h2

f2
⇡

k0k0
0

k0+p0��=
h2m2

⇡

f2
⇡(E��)


1+O
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Q2

m2
⇡

◆�
,(3)

whereEistheCMenergy,andtheWeinberg-Tomozawa(WT)term

vWT=
3(k0+k0

0)

2f2
⇡

=
3m⇡

f2
⇡


1+O
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m2
⇡

◆�
.(4)

Theu-channelexchangesof⌃or willnotbeconsideredbecausetheyinvolvetwopowers

ofQ,thussmallerthanvWTbyO(Q2/m2
⇡),whereQdenotesgenericallyexternalmomenta.

Resummationofvswillgiverisetothedesirednonperturbativephysics,butanargument

foritsnecessityinthepower-countinglanguagewillhelpunderstandtheoreticaluncertainties

oftheEFT-basedconclusions[6,7].Figure1showstwoinsertionsofvs,connectedbya

pion-baryonloop.WhenE��inthedenominatorofvsisassmallasthe self-energy,all

diagramswithserialinsertionsofvsareequallyimportant,hencetheresummation.

Letusfirstpowercountthenonrelativisticpion-baryonloop,shownaspartofFig.1.

Thefactthatthepionisnonrelativisticmodifiesinseveralaspectsthestandardpower

counting[5].The3-momentumofthepioninternallineisofQandtheenergym⇡+Q2/m⇡;

therefore,thepionpropagatoriscountedas1/Q2.Thebaryonpropagatorisstatic,and

theenergyflowingthroughitisofthesameorderasthekineticenergyofthepion.So,the

baryonpropagatoriscountedasm⇡/Q2.Withtheinternalpion4-momentumdenotedby

l,theintegrationvolume
R

d4lcontributesafactor⇠Q5/m⇡,inwhich
R

dl0⇠Q2/m⇡and
R

d3l⇠Q3.Inaddition,thenumericalfactorcomingoutofanonrelativisticloopisnormally

1/4⇡,comparedwiththatofarelativisticloop—1/16⇡2.Inconclusion,anonrelativistic

pion-baryonloopcontributesafactorofQ/4⇡.

Togetherwiththecouplingof to⇡⌃c,theLOself-energyof willbe⇠m2
⇡Q/(

p
4⇡f⇡)2,

incontrastwith⇠Q3/(4⇡f⇡)2inthecaseofarelativisticpion.Theappearanceof
p

4⇡f⇡=

4

hp
3f⇡

⇣
⌃a†⇡̇a + h.c.

⌘

⇤?
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Counting (very) soft pions

pion prop. ~ 1/Q2 

baryon prop. ~ 1/(Q2/mπ) 

Z
d4l

(2⇡)4
⇠ 1

4⇡

Q5

m⇡

nonrelativistic

FIG. 1: Once iterated s-channel exchange of  in ⇡⌃c scattering. The solid, dashed, and double

lines represent ⌃c, ⇡, and  , respectively.

included, those of the baryon will not be for simplicity, due to its much larger mass.

With the incoming (outgoing) 4-momentum of ⇡ denoted by k (k0) while that of ⌃c by p

(p0), I write the isoscalar S-wave ⇡⌃c “potentials” as the following two pieces: The s-channel

exchange of  is

vs =
h2

f 2
⇡

k0k0
0

k0 + p0 �� =
h2m2

⇡

f 2
⇡(E � �)


1 +O

✓
Q2

m2
⇡

◆�
, (3)

where E is the CM energy, and the Weinberg-Tomozawa (WT) term

vWT =
3(k0 + k0

0)

2f 2
⇡

=
3m⇡

f 2
⇡


1 +O

✓
Q2

m2
⇡

◆�
. (4)

The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

Resummation of vs will give rise to the desired nonperturbative physics, but an argument

for its necessity in the power-counting language will help understand theoretical uncertainties

of the EFT-based conclusions [6, 7]. Figure 1 shows two insertions of vs, connected by a

pion-baryon loop. When E � � in the denominator of vs is as small as the  self-energy, all

diagrams with serial insertions of vs are equally important, hence the resummation.

Let us first power count the nonrelativistic pion-baryon loop, shown as part of Fig. 1.

The fact that the pion is nonrelativistic modifies in several aspects the standard power

counting [5]. The 3-momentum of the pion internal line is of Q and the energy m⇡+Q2/m⇡;

therefore, the pion propagator is counted as 1/Q2. The baryon propagator is static, and

the energy flowing through it is of the same order as the kinetic energy of the pion. So, the

baryon propagator is counted as m⇡/Q2. With the internal pion 4-momentum denoted by

l, the integration volume
R
d4l contributes a factor ⇠ Q5/m⇡, in which

R
dl0 ⇠ Q2/m⇡ and

R
d3l ⇠ Q3. In addition, the numerical factor coming out of a nonrelativistic loop is normally

1/4⇡, compared with that of a relativistic loop— 1/16⇡2. In conclusion, a nonrelativistic

pion-baryon loop contributes a factor of Q/4⇡.

Together with the coupling of  to ⇡⌃c, the LO self-energy of  will be⇠ m2
⇡Q/(

p
4⇡f⇡)2,

in contrast with ⇠ Q3/(4⇡f⇡)2 in the case of a relativistic pion. The appearance of
p
4⇡f⇡ =

4

Σc

π

(BwL ’15)
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FIG. 1: Resummation of ⌃c-exchanges in ⇡⇤?
c scattering. The double, solid, and dashed lines

represent propagation of a ⇤?
c , a ⌃c, and a pion, respectively. The thick lines are dressed ⇤?

c

propagator.

Attaching ⇡⌃c⇤?
c vertexes to the dressed ⇤?

c propagator, we obtain the ⇡⌃c elastic scat-
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length and e↵ective range be fine-tuned, but Ref. [12] was able to show that thanks to

chiral symmetry, only one fine-tuning, the pion mass, is needed for the underlying theory to

situate the ⇤?
c so close to the ⇡⌃c threshold. Looking into how this fine-tuning propagates

through the charmed-baryon sector provides a perspective that could o↵er more insights into

hadronic interactions. For instance, the decay phenomenology of ⇤?
c becomes very sensitive

to isospin violations [13, 14] due to the smallness of �. The three-body system of ⇡⇡⌃c is

another natural stage to look for the implication of the said fine-tuning, in a spirit similar

to studying universality in few-body systems with large scattering length [15].

For the time being, only ⌃c, ⇤?
c and pions are relevant degrees of freedom, so we con-

sider the usual heavy-baryon chiral Lagrangian without heavy quark symmetry manifestly

incorporated. The relevant leading terms [12] are
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Here  (⌃) is the field that annihilates ⇤?
c (⌃c). The pion decay constant f⇡ = 92.4 MeV,

and the ⇡⌃c⇤?
c transition coupling h2 = 3/2h2

2

, where h
2

is the counterpart of h in the

HHChPT Lagrangian [5]. At LO, the transition vertex is approximately proportional to m⇡

because the pion momenta are very small. The second term of the first line is the Weinberg-

Tomazawa term for the ⌃c, and the third line is the leading S-wave pion-pion interaction.

I use throughout the paper the heavy-baryon notation for baryon energies, which have the

mass of ⌃c subtracted.

The two-body interaction of ⇡⌃c is can be encapsulated in the dressed ⇤?
c propagator [12],
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⇡ = 0.18 is the other small parameter to be exploited here.

Since we are only interested in very low energies at which ⇡⌃c interaction is resonant, we

can consider for power-counting purposes that |p
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� m⇡| ⇠ �. The dressing is necessary

when each term of the denominator in Eq. (2) is of the same size. It immediately follows

that � ⇠ Q2/m⇡ ⇠ ✏2m⇡, where we have used h = O(1). It can be numerically verified that

� and ✏2m⇡ are indeed of the same order of magnitude.
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included, those of the baryon will not be for simplicity, due to its much larger mass.

With the incoming (outgoing) 4-momentum of ⇡ denoted by k (k0) while that of ⌃c by p
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The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

Resummation of vs will give rise to the desired nonperturbative physics, but an argument

for its necessity in the power-counting language will help understand theoretical uncertainties

of the EFT-based conclusions [6, 7]. Figure 1 shows two insertions of vs, connected by a

pion-baryon loop. When E � � in the denominator of vs is as small as the  self-energy, all

diagrams with serial insertions of vs are equally important, hence the resummation.

Let us first power count the nonrelativistic pion-baryon loop, shown as part of Fig. 1.

The fact that the pion is nonrelativistic modifies in several aspects the standard power

counting [5]. The 3-momentum of the pion internal line is of Q and the energy m⇡+Q2/m⇡;

therefore, the pion propagator is counted as 1/Q2. The baryon propagator is static, and

the energy flowing through it is of the same order as the kinetic energy of the pion. So, the

baryon propagator is counted as m⇡/Q2. With the internal pion 4-momentum denoted by

l, the integration volume
R
d4l contributes a factor ⇠ Q5/m⇡, in which

R
dl0 ⇠ Q2/m⇡ and

R
d3l ⇠ Q3. In addition, the numerical factor coming out of a nonrelativistic loop is normally

1/4⇡, compared with that of a relativistic loop— 1/16⇡2. In conclusion, a nonrelativistic

pion-baryon loop contributes a factor of Q/4⇡.

Together with the coupling of  to ⇡⌃c, the LO self-energy of  will be⇠ m2
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because the pion momenta are very small. The second term of the first line is the Weinberg-

Tomazawa term for the ⌃c, and the third line is the leading S-wave pion-pion interaction.
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included, those of the baryon will not be for simplicity, due to its much larger mass.

With the incoming (outgoing) 4-momentum of ⇡ denoted by k (k0) while that of ⌃c by p

(p0), I write the isoscalar S-wave ⇡⌃c “potentials” as the following two pieces: The s-channel
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The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

Resummation of vs will give rise to the desired nonperturbative physics, but an argument

for its necessity in the power-counting language will help understand theoretical uncertainties

of the EFT-based conclusions [6, 7]. Figure 1 shows two insertions of vs, connected by a

pion-baryon loop. When E � � in the denominator of vs is as small as the  self-energy, all

diagrams with serial insertions of vs are equally important, hence the resummation.

Let us first power count the nonrelativistic pion-baryon loop, shown as part of Fig. 1.

The fact that the pion is nonrelativistic modifies in several aspects the standard power

counting [5]. The 3-momentum of the pion internal line is of Q and the energy m⇡+Q2/m⇡;

therefore, the pion propagator is counted as 1/Q2. The baryon propagator is static, and

the energy flowing through it is of the same order as the kinetic energy of the pion. So, the

baryon propagator is counted as m⇡/Q2. With the internal pion 4-momentum denoted by

l, the integration volume
R
d4l contributes a factor ⇠ Q5/m⇡, in which

R
dl0 ⇠ Q2/m⇡ and

R
d3l ⇠ Q3. In addition, the numerical factor coming out of a nonrelativistic loop is normally

1/4⇡, compared with that of a relativistic loop— 1/16⇡2. In conclusion, a nonrelativistic

pion-baryon loop contributes a factor of Q/4⇡.

Together with the coupling of  to ⇡⌃c, the LO self-energy of  will be⇠ m2
⇡Q/(

p
4⇡f⇡)2,

in contrast with ⇠ Q3/(4⇡f⇡)2 in the case of a relativistic pion. The appearance of
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Breakdown of universality

Universality : observables expected to scale w/  

Additional large length scale of r → universality relations break down 
sooner than expected

m?
⇡ �m⇡ ! 0

and its expansion around m?
⇡ at LO is found to be
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Again, � is easily seen at LO to be equal to m?
⇡ = m⇡.

In the immediate neighborhood ofm?
⇡, many dimensionful quantities are expected to scale

only with (m⇡ �m?
⇡), a rule known as universality [12]. The universality relation, B / �2

(see, for example, Ref. [4]), is recovered for �/(✏2m⇡) ! 0�:

B =
�2

h4✏2m⇡


1 +O

✓
�

h2✏2m⇡

◆�
. (11)

With the assumption h = O(1), an important revelation here is the validity scope of uni-
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The surprisingly small validity range of universality has everything to do with the emer-

gence of a second large length scale in addition to the scattering length: the e↵ective range.

Note that considerations of universality alone cannot capture the significance of f⇡— the

mass scale intimately related to chiral symmetry and its spontaneous breaking.

To know better the uncertainty of the LO calculations and how reliable the conclusions

thus drawn, we compute the subleading corrections. They are partly driven by the WT
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Profile of phase shifts

FIG. 2: (Color online) The LO phase shifts as functions of k/(h2✏m⇡), with various values of

�̃. From the top down, the solid lines are the phase shifts plotted with �̃ = �0.2, 0.2, and 3,

respectively. The inflection point on �̃ = 3 is marked out with a diamond. The dashed lines

separate the three di↵erent regions defined in the text: the boundary between “I” and “II” is the

phase shift with �̃ = 0 and the one between “II” and “III” with �̃ = 2/3.

S-wave bound state weakly coupled to other decay channels. (For instance, in many of its

theoretical descriptions X(3872) is constructed as a bound state of D0D̄⇤0 + D̄0D⇤0 and it

decays into, among others, D0D̄0⇡ [9, 10, 17–19].) The construction in the present paper

does not reject this possibility, for when � < 0 the excited baryon indeed corresponds to

a shallow bound state, but it also indicates that a shallow two-body resonance is equally

possible, with a small tweak of �. One would have to decide on a case-by-case basis how

important other decays are. In the particular case of ⇤+
c (2595), the decay of ⌃c into ⇡⇤+

c

contributes a two-loop correction to the  self-energy, and it will appears as a subleading

correction to the scattering length of ⇡⌃c elastic scattering.

Moreover, Eq. (8) shows that chiral symmetry facilitates the resonance to be near thresh-

old only when m⇡ ⌧ p
4⇡f⇡, an insight obtained by accounting for the fact that the pion is

nonrelativistic. When � &
p
4⇡f⇡ (but still within the validity range of ChPT), the e↵ective

range is more likely naturally sized; therefore, other mechanisms, like three-body decays,

are more favored than two-body interactions alone to generate a near-threshold resonance.

Bound state In region I, the phase shifts are dominated by the shallow bound state pole.

Unlike the phase shifts, the binding energy is more directly linked to lattice calculations,
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state, it suggests that by a small tweak of δ, a narrow near-
threshold two-body resonance is equally possible.
Since the phase shifts can be obtained from lattice QCD

via Lüscher’s formula [32], we find it useful that the
transition from the bound state to the resonance can in fact
be presented by the morphing of the profile of the phase
shifts. The phase shift θ at LO is most easily expressed as a
function of k=ðh2ϵmπÞ, with ~δ≡ δ=ðh4ϵ2mπÞ being the
only free parameter. Shown in Fig. 2 are the LO phase
shifts, plotted with various ~δ. The curves can be cast into
three categories according to their geometric properties,
with each category taking up a specific region.
In region I, δ < 0 and a shallow bound state emerges.

The phase shift function is convex over the whole domain
of k; it descends from 180° at threshold, as required by
Levinson’s theorem, turning around to start rising at the
stationary point: kstat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2mπδ

p
.

A few words about the binding energy are in order, for it
is more directly linked to lattice calculations than the phase
shifts. Its value around m⋆

π at LO is found to be

B0ðδ;mπÞ ¼
h4

2
ϵ2mπ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
2δ

h4ϵ2mπ

s

− 1

!
2

: ð10Þ

When δ ¼ 0, the binding energy vanishes and the scattering
length diverges. The universality relation, B ∝ δ2 (see, for
example, Ref. [33]), is recovered for δ=ðϵ2mπÞ → 0−,

B ¼ δ2

h4ϵ2mπ

"
1þO

#
δ

h2ϵ2mπ

$%
: ð11Þ

With the assumption h ¼ Oð1Þ, an important revelation
here is that the validity scope of universality is extremely
small if Δ ≪

ffiffiffiffiffiffi
4π

p
fπ ,

&&&&
mπ −m⋆

π

mπ

&&&& ≪ ½ϵðΔÞ&2 ¼
#

Δ
328 MeV

$
4

: ð12Þ

The surprisingly small validity range of universality has
everything to do with the emergence of a second large
length scale: the effective range. We need to note that
considerations of universality alone cannot capture the
significance of fπ , the mass scale intimately related to
chiral symmetry and its spontaneous breaking.
In region II where ~δ turns positive but is still smaller than

2=3, the phase shift is a concave function of k, and has no
stationary point. This region covers the mπ gap identified
by the coexistence of two virtue poles, but does not exactly
coincide with it. This shows from one aspect the slight
ambiguity of defining the emergence of S-wave resonances.
Finally, when ~δ > 2=3, the phase shift functions occupy

region III. They all consist of a convex segment near
threshold, before becoming concave toward higher ener-
gies. The inflection point is at the origin for ~δ ¼ 2=3, but
more generally its position does not have a closed form as a
function of ~δ. For illustration purposes, the inflection point
is marked out in Fig. 2 on the curve with ~δ ¼ 3.
To know better the uncertainty of the LO calculations

and how reliable the conclusions thus drawn are, we
compute the subleading corrections to the scattering
amplitude. They are partly driven by the WT term, which
brings no free parameters more than h=fπ , δ, andmπ. Other
next-to-leading order (NLO) contributions include the
recoil effects of the pion. The sum of these NLO con-
tributions can too be cast into the form of the effective range
expansion,

Tð1ÞðkÞ ¼ −
−γ1 þ r1

2 k
2 þ Pk4

ð−γ0 þ r0
2 k

2 − ikÞ2
; ð13Þ

with

γ1 ¼
3

h4
δ
mπ

δ
ϵ
; ð14Þ

r1
2
¼ −

"
δ
mπ

#
1 −

3

h2

$
þ 2

ϵ
4π

%
ðh2ϵmπÞ−1; ð15Þ

P ¼ ϵ2h2
#
h2 −

3

4

$
ðh2ϵmπÞ−3; ð16Þ

where P is the shape parameter, and γ1 and r1 are the
corrections to the inverse scattering length and the effective
range. ϵ=4π ¼ ðmπ=4πfπÞ2 is the more usual ChPT expan-
sion parameter for relativistic pions and it reflects here the

FIG. 2. The LO phase shifts as functions of k=ðh2ϵmπÞ, with
various values of ~δ. From the top down, the solid lines are the
phase shifts plotted with ~δ ¼ −0.2, 0.2, and 3, respectively. The
inflection point on ~δ ¼ 3 is marked out with a diamond.
The dashed lines separate the three different regions defined in
the text: the boundary between I and II is the phase shift with
~δ ¼ 0 and the one between II and III with ~δ ¼ 2=3.
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Can a Σc attract more pions?

very soft π’s interact w/ other hadrons weakly 

πΣc potential is energy-dependent  
→ more complicated than independent-boson systems  
 
 
 

Searching 3-body states by finding poles of πΛc* “scattering 
amplitude” (or any other correlation func. having same quantum 
numbers as                       )

FIG. 1: Once iterated s-channel exchange of  in ⇡⌃c scattering. The solid, dashed, and double

lines represent ⌃c, ⇡, and  , respectively.

included, those of the baryon will not be for simplicity, due to its much larger mass.

With the incoming (outgoing) 4-momentum of ⇡ denoted by k (k0) while that of ⌃c by p

(p0), I write the isoscalar S-wave ⇡⌃c “potentials” as the following two pieces: The s-channel

exchange of  is

vs =
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k0k0
0

k0 + p0 �� =
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where E is the CM energy, and the Weinberg-Tomozawa (WT) term
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3(k0 + k0
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2f 2
⇡

=
3m⇡

f 2
⇡


1 +O

✓
Q2

m2
⇡

◆�
. (4)

The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

Resummation of vs will give rise to the desired nonperturbative physics, but an argument

for its necessity in the power-counting language will help understand theoretical uncertainties

of the EFT-based conclusions [6, 7]. Figure 1 shows two insertions of vs, connected by a

pion-baryon loop. When E � � in the denominator of vs is as small as the  self-energy, all

diagrams with serial insertions of vs are equally important, hence the resummation.

Let us first power count the nonrelativistic pion-baryon loop, shown as part of Fig. 1.

The fact that the pion is nonrelativistic modifies in several aspects the standard power

counting [5]. The 3-momentum of the pion internal line is of Q and the energy m⇡+Q2/m⇡;

therefore, the pion propagator is counted as 1/Q2. The baryon propagator is static, and

the energy flowing through it is of the same order as the kinetic energy of the pion. So, the

baryon propagator is counted as m⇡/Q2. With the internal pion 4-momentum denoted by

l, the integration volume
R
d4l contributes a factor ⇠ Q5/m⇡, in which

R
dl0 ⇠ Q2/m⇡ and

R
d3l ⇠ Q3. In addition, the numerical factor coming out of a nonrelativistic loop is normally

1/4⇡, compared with that of a relativistic loop— 1/16⇡2. In conclusion, a nonrelativistic

pion-baryon loop contributes a factor of Q/4⇡.

Together with the coupling of  to ⇡⌃c, the LO self-energy of  will be⇠ m2
⇡Q/(

p
4⇡f⇡)2,

in contrast with ⇠ Q3/(4⇡f⇡)2 in the case of a relativistic pion. The appearance of
p
4⇡f⇡ =

4
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Σc

π

Two-flavor chiral symmetry su�ces to demonstrate the points I will make. Regardless of

isospin of the S-wave resonance, the lowest-order coupling of the resonance to pion-baryon

must involve one time derivative on the pion field. Ensured by chiral symmetry and parity

conservation, this is the single most important feature of an S-wave baryon resonance, and

it is the foundation of what to be developed here. The heavy-baryon Lagrangian terms with

Weinberg’s chiral index [17, 18] ⌫ = 0 are

L(0) = ⌃a†

i@0�ab +

i

f 2
⇡

�
⇡a⇡̇b � ⇡b⇡̇a

��
⌃b

+ † (i@0 ��) + i
g⌃
f⇡

✏abc⌃
a†~� · ~r⇡b⌃c

+
hp
3f⇡

�
⌃a†⇡̇a + h.c.

�
+ · · ·

(2)

Here  (⌃) is the field that annihilates ⇤+
c (2595) [⌃c(2455)] and g⌃ the axial coupling of

⌃c(2455). 1

Now we turn to construction of the S-wave amplitude for ⇡⌃c elastic scattering. When

m⇡ is near m?
⇡, either below or above, ⇤+

c (2595) remains a near-threshold phenomenon and

the pion is nonrelativistic. Therefore, k and the energy shift of the resonance from threshold

� ⌘ � � m⇡ are both much smaller than m⇡: k/m⇡ ⌧ 1 and |�|/m⇡ ⌧ 1. The recoil

e↵ects of the pion will be systematically included, whereas those of the baryon will not be

considered here, due to its much larger mass.

With the incoming (outgoing) 4-momentum of ⇡ denoted by kµ (k0
µ) and that of ⌃c by pµ

(p0µ), I write the isoscalar S-wave ⇡⌃c “potentials” as the following two pieces: The s-channel

exchange of  is

vs =
h2
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k0k0
0
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where E is the CM energy, and the Weinberg-Tomozawa (WT) term

vWT =
3(k0 + k0

0)
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=
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The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

1 The D-meson-nucleon system can be integrated out here because DN would have to be quite o↵-shell to

be relevant, with the CM momentum around
p
2µ�DN ' 510 MeV, where µ is the reduced mass of DN

and �DN is the CM energy di↵erence between ⇤+
c (2595) and DN threshold.
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FIG. 1. The dressed ⇤?
c propagator. The double, solid, and dashed lines represent propagation of

a ⇤?
c , a ⌃c, and a pion, respectively.
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FIG. 2. Resummation of ⌃c-exchanges in ⇡⇤?
c scattering.

Since there is not any physical di↵erence between the field and composite operator ⇡b⌃b,

any correlation functions of the form h0|⇡a ⇡a †|0i can be used to search for potential states

associated with ⇡⇡⌃c. I choose to study the pole structure of the ⇡⇤?
c scattering amplitude,

represented by the blob in Fig. 2. In the center-of-mass (CM) frame, the pion has incoming

(outgoing) four-momentum (k
0

+m⇡,~k) [(q0+m⇡, ~q )] and the baryon has incoming (outgoing)

four-momentum (E
⇤

+m⇡,�~k) [(E � q
0

+m⇡,�~q )], where E
⇤

is the energy of ⇤?
c . In my

notation the CM energy
p
s = E + 2m⇡ +M

⌃c , and E = ~q 2/2m⇡ + E
⇤

when the external

pions are on-shell, but the external ⇤?
c are not necessarily so.

We can break up any ⇡⇤?
c scattering diagrams into two parts: (1) ⇡⇤?

c potentials, diagrams

that are still connected after a pion and a ⇤?
c internal lines are cut, and (2) propagation of ⇡⇤?

c

with the dressed ⇤?
c propagator. The dominant ⇡⇤?

c potential is the u-channel ⌃c-exchange.

Illustrated in the second line of Fig. 2 are ⌃c exchanges connected by ⇡⇤?
c propagators.

Using power-counting language, I argue as follow that these diagrams must be resummed.

The pion’s kinetic energy is ⇠ Q2/m⇡, so is the energy following through baryon prop-

agators. Therefore, the ⌃c propagator contributes a factor of (Q2/m⇡)�1. With the ⇡⌃c⇤?
c

vertex ⇠ (m⇡/f⇡), the LO potential is then counted as

m⇡

f⇡

1

Q2/m⇡

m⇡

f⇡
⇠ m3

⇡

f 2

⇡Q
2

. (4)

The propagation of ⇡⇤?
c intermediate states consists of a pion propagator contributing a

factor of 1/Q2, a dressed ⇤?
c propagator ⇠ (Q2/m⇡)�1, and the loop integration

R
dl

0

d3l ⇠
(Q2/m⇡)Q3. The numerical factor associated with nonrelativistic pion loops is typically

1/(4⇡), rather than 1/(16⇡2) [6]. Therefore, the ⇡⇤?
c propagation generally contributes a
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FIG. 1: Resummation of ⌃c-exchanges in ⇡⇤?
c scattering. The double, solid, and dashed lines

represent propagation of a ⇤?
c , a ⌃c, and a pion, respectively. The thick lines are dressed ⇤?

c

propagator.

Attaching ⇡⌃c⇤?
c vertexes to the dressed ⇤?

c propagator, we obtain the ⇡⌃c elastic scat-

tering amplitude and extract the scattering length and e↵ective range as follows [12],
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c , where ⇤
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c intermediate states. Figure 2 (c) shows how the ⇡⇤+

c

intermediate states contribute. The four-momentum flowing through the loop is of the size

Q0 ⇠ (M
⌃c � M

⇤

+
c
+ 2m⇡), which can be numerically approximated by ⇠ 3m⇡; therefore,

5

FIG. 1. The dressed ⇤?
c propagator. The double, solid, and dashed lines represent propagation of

a ⇤?
c , a ⌃c, and a pion, respectively.

= +

= + + ...+

FIG. 2. Resummation of ⌃c-exchanges in ⇡⇤?
c scattering.

Since there is not any physical di↵erence between the field and composite operator ⇡b⌃b,

any correlation functions of the form h0|⇡a ⇡a †|0i can be used to search for potential states

associated with ⇡⇡⌃c. I choose to study the pole structure of the ⇡⇤?
c scattering amplitude,

represented by the blob in Fig. 2. In the center-of-mass (CM) frame, the pion has incoming

(outgoing) four-momentum (k
0

+m⇡,~k) [(q0+m⇡, ~q )] and the baryon has incoming (outgoing)

four-momentum (E
⇤

+m⇡,�~k) [(E � q
0

+m⇡,�~q )], where E
⇤

is the energy of ⇤?
c . In my

notation the CM energy
p
s = E + 2m⇡ +M

⌃c , and E = ~q 2/2m⇡ + E
⇤

when the external

pions are on-shell, but the external ⇤?
c are not necessarily so.

We can break up any ⇡⇤?
c scattering diagrams into two parts: (1) ⇡⇤?

c potentials, diagrams

that are still connected after a pion and a ⇤?
c internal lines are cut, and (2) propagation of ⇡⇤?

c

with the dressed ⇤?
c propagator. The dominant ⇡⇤?

c potential is the u-channel ⌃c-exchange.

Illustrated in the second line of Fig. 2 are ⌃c exchanges connected by ⇡⇤?
c propagators.

Using power-counting language, I argue as follow that these diagrams must be resummed.

The pion’s kinetic energy is ⇠ Q2/m⇡, so is the energy following through baryon prop-

agators. Therefore, the ⌃c propagator contributes a factor of (Q2/m⇡)�1. With the ⇡⌃c⇤?
c

vertex ⇠ (m⇡/f⇡), the LO potential is then counted as

m⇡

f⇡

1

Q2/m⇡

m⇡

f⇡
⇠ m3

⇡

f 2

⇡Q
2

. (4)

The propagation of ⇡⇤?
c intermediate states consists of a pion propagator contributing a

factor of 1/Q2, a dressed ⇤?
c propagator ⇠ (Q2/m⇡)�1, and the loop integration

R
dl

0

d3l ⇠
(Q2/m⇡)Q3. The numerical factor associated with nonrelativistic pion loops is typically

1/(4⇡), rather than 1/(16⇡2) [6]. Therefore, the ⇡⇤?
c propagation generally contributes a

4

⇒ Solving

Comparable
Q ⇠ ✏m⇡

++ +=
...

FIG. 1: The dressed ⇤?
c propagator. The double, solid, and dashed lines represent propagation of

a ⇤?
c , a ⌃c, and a pion, respectively.

= +

= + + ...+

FIG. 2: Resummation of ⌃c-exchanges in ⇡⇤?
c scattering.

Since there is not any physical di↵erence between the field and composite operator ⇡b⌃b,

any correlation functions of the form h0|⇡a ⇡a †|0i can be used to search for potential states

associated with ⇡⇡⌃c. I choose to study the pole structure of the ⇡⇤?
c scattering amplitude,

represented by the blob in Fig. 2. In the center-of-mass (CM) frame, the pion has incoming

(outgoing) four-momentum (k
0

+m⇡,~k) [(q0+m⇡, ~q )] and the baryon has incoming (outgoing)

four-momentum (E
⇤

+m⇡,�~k) [(E � q
0

+m⇡,�~q )], where E
⇤

is the energy of ⇤?
c . In my

notation the CM energy
p
s = E + 2m⇡ +M

⌃c , and E = ~q 2/2m⇡ + E
⇤

when the external

pions are on-shell, but the external ⇤?
c are not necessarily so.

We can break up any ⇡⇤?
c scattering diagrams into two parts: (1) ⇡⇤?

c potentials, diagrams

that are still connected after a pion and a ⇤?
c internal lines are cut, and (2) propagation of ⇡⇤?

c

with the dressed ⇤?
c propagator. The dominant ⇡⇤?

c potential is the u-channel ⌃c-exchange.

Illustrated in the second line of Fig. 2 are ⌃c exchanges connected by ⇡⇤?
c propagators.

Using power-counting language, I argue as follow that these diagrams must be resummed.

The pion’s kinetic energy is ⇠ Q2/m⇡, so is the energy following through baryon prop-

agators. Therefore, the ⌃c propagator contributes a factor of (Q2/m⇡)�1. With the ⇡⌃c⇤?
c

vertex ⇠ (m⇡/f⇡), the LO potential is then counted as

m⇡

f⇡

1

Q2/m⇡

m⇡

f⇡
⇠ m3

⇡

f 2

⇡Q
2

. (4)

The propagation of ⇡⇤?
c intermediate states consists of a pion propagator contributing a

factor of 1/Q2, a dressed ⇤?
c propagator ⇠ (Q2/m⇡)�1, and the loop integration

R
dl

0

d3l ⇠
(Q2/m⇡)Q3. The numerical factor associated with nonrelativistic pion loops is typically

1/(4⇡), rather than 1/(16⇡2) [6]. Therefore, the ⇡⇤?
c propagation generally contributes a

4



Estimating corrections

Λ+c

(b)(a) (c)

FIG. 2: Subleading ⇡⇤?
c potentials. Except that the baryon propagator at the center of (c) repre-

sents the ground-state ⇤+

c , the symbols are the same as in Fig. 1.

(Q2/m⇡)Q3. The numerical factor associated with nonrelativistic pion loops is typically

1/(4⇡), rather than 1/(16⇡2) [12]. Therefore, the ⇡⇤?
c propagation generally contributes a

factor of Q/4⇡.

The once-iterated potential, the second diagram in the second line of Fig. 1, scales as

m3

⇡

f 2

⇡Q
2

Q

4⇡

m3

⇡

f 2

⇡Q
2

⇠ m3

⇡

f 2

⇡Q
2

Q

✏m⇡
(5)
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second line of Fig. 1.

With the above argumentation, we are in a position to estimate theoretical uncertainties

of the present analysis by counting subleading corrections that are not included at LO. In

Fig. 2 (a) S-wave pion-pion vertexes contribute a factor of m2

⇡/f
2

⇡ . With the aforementioned

counting rule applied to other elements of the diagram, pion-pion interactions are found

to correct the LO ⇡⇤?
c potential by O(✏2). However, this does not mean that the prob-
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The Weinberg-Tomozawa term for the ⌃c provides corrections to both the ⇤?
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and the ⇡⇤?
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c self energy

was found in Ref. [12] to be O(✏2).

Since the ⌃c couples to ⇡⇤+

c , where ⇤
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c is the ground-state charmed baryon, it is necessary

to analyze the contribution of the ⇡⇤+

c intermediate states. Figure 2 (c) shows how the ⇡⇤+
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intermediate states contribute. The four-momentum flowing through the loop is of the size
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but still suppressed  

we can apply the standard ChPT counting to relativistic pions. The ⌃c propagators are

o↵-shell by an amount of 2m⇡, and the ⇡⇤+

c ⌃c transition vertex contributes a factor of Q0.

Putting these elements together, we find the diagram scales
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which is suppressed by a factor of 3

2

✏2( Q0

4⇡f⇡
)2, compared with the LO potential. Intermediates

states involving more pions, like ⇡⇡⇤+

c , give rise to even more loops, and hence are more

suppressed.

⌃c and ⇤?
c have respectively a spin-3/2 neighboring state, ⌃c(2520) and ⇤+

c (2625). These

neighboring states are degenerate in the heavy quark limit. If we only search for possible

resonances with I(JP ) = 1(1
2

+

), these spin-3/2 partners will not interfere very much despite

the relatively small mass di↵erence. For example, consider the u-channel exchange between

⇤?
c and ⇡ by a ⌃c(2520), denoted by ⌃?

c . The ⇡⌃?
c⇤

?
c transition vertex is proportional to

the pion momentum square [5]. After being projected onto the S-wave, the ⌃?
c exchange is

suppressed by O(✏2Q2/M2

hi), whereMhi is the break-down scale of this specialized, two-flavor

ChPT.

The above power counting applies to expansion of the amplitude, not that of properties

like the pole position that are extracted from the amplitude. While the LO amplitude
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not to the accuracy level discussed above.
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T (~q;E,E
⇤

, q
0

) = � h2m2

⇡

3f 2

⇡(E⇤

� q
0

+ i0)

+ ih2

m2

⇡

3f 2

⇡

Z
d4l

(2⇡)4
1

E � q
0

� l
0

+ i0

1

2m⇡l0 �~l 2 + i0

⇥ T (~l;E,E
⇤

, l
0

)

E � l
0

� � � ✏h2

p�2(E � l
0

)m⇡ � i0 + i0
,

(7)

where l2
0

has been dropped o↵ in the pion propagator, since l
0

⇠ ~l2/2m⇡. Integrating over

l
0

and the angular part of ~l, setting q
0

= ~q2/2m⇡ to define t(q; E ,B) ⌘ T (~q;E,E
⇤

, q2/2m⇡),

6

⇠ ✏2
m3

⇡

f2
⇡Q

3

Q’  ~ 3mπ



Integral equation
we arrive at

t(q; E ,B) = 8⇡/|r|
3(q2 + B) +

2

3⇡

Z

⌃l

dl
l2

q2 � E + l2 + i0

⇥ t(l; E ,B)
� 1

a � |r|
2

(E � l2) +
p
l2 � E � i0� i0

,
(8)

where E ⌘ 2m⇡E, B ⌘ �2m⇡E⇤

, and the ⇡⌃c scattering length and e↵ective range have

been used to make the notation more compact. The subscript ⌃l serves to remind that

in order to continue t(q; E ,B) to the complex E plane, we need to deform the integration

contour away from the positive real axis. Since we are only interested in extracting the pole

position, the field renormalization constants of ⇡ and  are not accounted for.

The integral in Eq. (8) actually converges. To see this, note that the q dependence on

the right hand side suggests that when q ! 1, t(q; E ,B) vanishes as fast as q�2. The

convergence is also confirmed numerically. It is rather important that the pole position

extracted is independent of the way the integral is regularized, for we can then state with

confidence that the sought-after hadronic structure does not come out of modeling short-

range QCD physics.

In order to continue analytically the above integral equation into the complex E plane,

one must deform tactfully the integration contour so that, as E moves into its second sheet,

it does not interfere any singularities of the integrand. The technique used here is similar

to that of Ref. [16], i.e., rotating the l contour l ! le�i�. Reference. [16] accounted for

the singularities of two propagators as functions of l, but did not discuss the possible l-

singularities of t(l; E ,B) as a function of l. Remarkably, even after taking into consideration

the singularities of t(l; E ,B) as a function of l, one can show that the prescription of Ref. [16]

does not need to change. The technical details of the calculation is carried out will be shown

in a later publication [17].

Numerical calculations indeed indicate that there exists a resonance state with I(JP ) =

1(1
2

+

), situated near the ⇡⇡⌃c threshold. I denote this state by ⌃(⇡⇡⌃c,
1

2

) in the present

paper. Its existence is manifested by the resonance pole of ⇡⇤?
c ! ⇡⇤?

c amplitude. A

mathematically compact way to present the pole position is to define dimensionless quantities

eE ⌘ E/(✏h2m⇡)
2, �̃ ⌘ �/(✏2h4m⇡) , (9)

and to show how the pole position in the eE plane varies with �̃, eE
pole

= eE
pole

(�̃). Figure 3

shows the pole trajectory as �̃ varies from �4 to �1.
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FIG. 1: Resummation of ⌃c-exchanges in ⇡⇤?
c scattering. The double, solid, and dashed lines

represent propagation of a ⇤?
c , a ⌃c, and a pion, respectively. The thick lines are dressed ⇤?

c

propagator.

Attaching ⇡⌃c⇤?
c vertexes to the dressed ⇤?

c propagator, we obtain the ⇡⌃c elastic scat-

tering amplitude and extract the scattering length and e↵ective range as follows [12],

�1/a =
�

✏h2

, r = � �
✏h2m⇡

��1

. (3)

Since there is not any physical di↵erence between the field and composite operator ⇡b⌃b,

any correlation functions of the form h0|⇡a ⇡a †|0i can be used to search for potential states

associated with ⇡⇡⌃c. I choose to study the pole structure of the ⇡⇤?
c scattering amplitude,

represented by the blob in Fig. 1. In the center-of-mass (CM) frame, the pion has incoming

(outgoing) four-momentum (k
0

+m⇡,~k) [(q0+m⇡, ~q )] and the baryon has incoming (outgoing)

four-momentum (E
⇤

+m⇡,�~k) [(E � q
0

+m⇡,�~q )], where E
⇤

is the energy of ⇤?
c . In my

notation the CM energy
p
s = E + 2m⇡ +M

⌃c , and E = ~q 2/2m⇡ + E
⇤

when the external

pions are on-shell, but the external ⇤?
c are not necessarily so.

We can break up any ⇡⇤?
c scattering diagrams into two parts: (1) ⇡⇤?

c potentials, diagrams

that are still connected after a pion and a ⇤?
c internal lines are cut, and (2) propagation of ⇡⇤?

c

with the dressed ⇤?
c propagator. The dominant ⇡⇤?

c potential is the u-channel ⌃c-exchange.

Illustrated in the second line of Fig. 1 are ⌃c exchanges connected by ⇡⇤?
c propagators.

Using power-counting language, I argue as follow that these diagrams must be resummed.

The pion’s kinetic energy is ⇠ Q2/m⇡, so is the energy following through baryon prop-

agators. Therefore, the ⌃c propagator contributes a factor of (Q2/m⇡)�1. With the ⇡⌃c⇤?
c

vertex ⇠ (m⇡/f⇡), the LO potential is then counted as

m⇡

f⇡

1

Q2/m⇡

m⇡

f⇡
⇠ m3

⇡

f 2

⇡Q
2

. (4)

The propagation of ⇡⇤?
c intermediate states consists of a pion propagator contributing a

factor of 1/Q2, a dressed ⇤?
c propagator ⇠ (Q2/m⇡)�1, and the loop integration

R
dl

0

d3l ⇠

4

we arrive at

t(q; E ,B) = 8⇡/|r|
3(q2 + B) +

2

3⇡

Z

⌃l

dl
l2

q2 � E + l2 + i0

⇥ t(l; E ,B)
� 1

a � |r|
2

(E � l2) +
p
l2 � E � i0� i0

,
(8)

where E ⌘ 2m⇡E, B ⌘ �2m⇡E⇤

, and the ⇡⌃c scattering length and e↵ective range have

been used to make the notation more compact. The subscript ⌃l serves to remind that

in order to continue t(q; E ,B) to the complex E plane, we need to deform the integration

contour away from the positive real axis. Since we are only interested in extracting the pole

position, the field renormalization constants of ⇡ and  are not accounted for.

The integral in Eq. (8) actually converges. To see this, note that the q dependence on

the right hand side suggests that when q ! 1, t(q; E ,B) vanishes as fast as q�2. The

convergence is also confirmed numerically. It is rather important that the pole position

extracted is independent of the way the integral is regularized, for we can then state with

confidence that the sought-after hadronic structure does not come out of modeling short-

range QCD physics.

In order to continue analytically the above integral equation into the complex E plane,

one must deform tactfully the integration contour so that, as E moves into its second sheet,

it does not interfere any singularities of the integrand. The technique used here is similar

to that of Ref. [16], i.e., rotating the l contour l ! le�i�. Reference. [16] accounted for

the singularities of two propagators as functions of l, but did not discuss the possible l-

singularities of t(l; E ,B) as a function of l. Remarkably, even after taking into consideration

the singularities of t(l; E ,B) as a function of l, one can show that the prescription of Ref. [16]

does not need to change. The technical details of the calculation is carried out will be shown

in a later publication [17].

Numerical calculations indeed indicate that there exists a resonance state with I(JP ) =

1(1
2

+

), situated near the ⇡⇡⌃c threshold. I denote this state by ⌃(⇡⇡⌃c,
1

2

) in the present

paper. Its existence is manifested by the resonance pole of ⇡⇤?
c ! ⇡⇤?

c amplitude. A

mathematically compact way to present the pole position is to define dimensionless quantities

eE ⌘ E/(✏h2m⇡)
2, �̃ ⌘ �/(✏2h4m⇡) , (9)

and to show how the pole position in the eE plane varies with �̃, eE
pole

= eE
pole

(�̃). Figure 3

shows the pole trajectory as �̃ varies from �4 to �1.
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FIG. 1. The dressed ⇤?
c propagator. The double, solid, and dashed lines represent propagation of

a ⇤?
c , a ⌃c, and a pion, respectively.
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FIG. 2. Resummation of ⌃c-exchanges in ⇡⇤?
c scattering.

Since there is not any physical di↵erence between the field and composite operator ⇡b⌃b,

any correlation functions of the form h0|⇡a ⇡a †|0i can be used to search for potential states

associated with ⇡⇡⌃c. I choose to study the pole structure of the ⇡⇤?
c scattering amplitude,

represented by the blob in Fig. 2. In the center-of-mass (CM) frame, the pion has incoming

(outgoing) four-momentum (k
0

+m⇡,~k) [(q0+m⇡, ~q )] and the baryon has incoming (outgoing)

four-momentum (E
⇤

+m⇡,�~k) [(E � q
0

+m⇡,�~q )], where E
⇤

is the energy of ⇤?
c . In my

notation the CM energy
p
s = E + 2m⇡ +M

⌃c , and E = ~q 2/2m⇡ + E
⇤

when the external

pions are on-shell, but the external ⇤?
c are not necessarily so.

We can break up any ⇡⇤?
c scattering diagrams into two parts: (1) ⇡⇤?

c potentials, diagrams

that are still connected after a pion and a ⇤?
c internal lines are cut, and (2) propagation of ⇡⇤?

c

with the dressed ⇤?
c propagator. The dominant ⇡⇤?

c potential is the u-channel ⌃c-exchange.

Illustrated in the second line of Fig. 2 are ⌃c exchanges connected by ⇡⇤?
c propagators.

Using power-counting language, I argue as follow that these diagrams must be resummed.

The pion’s kinetic energy is ⇠ Q2/m⇡, so is the energy following through baryon prop-

agators. Therefore, the ⌃c propagator contributes a factor of (Q2/m⇡)�1. With the ⇡⌃c⇤?
c

vertex ⇠ (m⇡/f⇡), the LO potential is then counted as

m⇡

f⇡

1

Q2/m⇡

m⇡

f⇡
⇠ m3

⇡

f 2

⇡Q
2

. (4)

The propagation of ⇡⇤?
c intermediate states consists of a pion propagator contributing a

factor of 1/Q2, a dressed ⇤?
c propagator ⇠ (Q2/m⇡)�1, and the loop integration

R
dl

0

d3l ⇠
(Q2/m⇡)Q3. The numerical factor associated with nonrelativistic pion loops is typically

1/(4⇡), rather than 1/(16⇡2) [6]. Therefore, the ⇡⇤?
c propagation generally contributes a

4

q: 3-mom. 

E: total CM energy →

EΛ: Λc* energy

t(q) → 1/q2, so integral converges as l → ∞; and cutoff 

independent 

3-body resonances  
= poles of  t(q; E, EΛ) as a function of E

we arrive at

t(q; E ,B) = 8⇡/|r|
3(q2 + B) +

2

3⇡

Z

⌃l

dl
l2

q2 � E + l2 + i0

⇥ t(l; E ,B)
� 1

a � |r|
2

(E � l2) +
p
l2 � E � i0� i0

,
(8)

where E ⌘ 2m⇡E, B ⌘ �2m⇡E⇤

, and the ⇡⌃c scattering length and e↵ective range have

been used to make the notation more compact. The subscript ⌃l serves to remind that

in order to continue t(q; E ,B) to the complex E plane, we need to deform the integration

contour away from the positive real axis. Since we are only interested in extracting the pole

position, the field renormalization constants of ⇡ and  are not accounted for.

The integral in Eq. (8) actually converges. To see this, note that the q dependence on

the right hand side suggests that when q ! 1, t(q; E ,B) vanishes as fast as q�2. The

convergence is also confirmed numerically. It is rather important that the pole position

extracted is independent of the way the integral is regularized, for we can then state with

confidence that the sought-after hadronic structure does not come out of modeling short-

range QCD physics.

In order to continue analytically the above integral equation into the complex E plane,

one must deform tactfully the integration contour so that, as E moves into its second sheet,

it does not interfere any singularities of the integrand. The technique used here is similar

to that of Ref. [16], i.e., rotating the l contour l ! le�i�. Reference. [16] accounted for

the singularities of two propagators as functions of l, but did not discuss the possible l-

singularities of t(l; E ,B) as a function of l. Remarkably, even after taking into consideration

the singularities of t(l; E ,B) as a function of l, one can show that the prescription of Ref. [16]

does not need to change. The technical details of the calculation is carried out will be shown

in a later publication [17].

Numerical calculations indeed indicate that there exists a resonance state with I(JP ) =

1(1
2

+

), situated near the ⇡⇡⌃c threshold. I denote this state by ⌃(⇡⇡⌃c,
1

2

) in the present

paper. Its existence is manifested by the resonance pole of ⇡⇤?
c ! ⇡⇤?

c amplitude. A

mathematically compact way to present the pole position is to define dimensionless quantities

eE ⌘ E/(✏h2m⇡)
2, �̃ ⌘ �/(✏2h4m⇡) , (9)

and to show how the pole position in the eE plane varies with �̃, eE
pole

= eE
pole

(�̃). Figure 3

shows the pole trajectory as �̃ varies from �4 to �1.
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FIG. 4. The integration contour C and singularities of the integrand in the !-plane, when E is in

its first sheet. The thick line is Singularity (1), the dashed line C 0 Singularity (2), and the cross

Singularity (3) (see the text for detailed explanation).

It proves convenient to illustrate the contour with !l ⌘ E � l2, instead of l. Shown in Fig. 4,

as E approaches the real axis from above, the contour C starts at E and extends leftward

to infinity. Once the contour C is chosen, we can solve numerically for t(!q; E ,B), with
!q ⌘ E � q2 also running along C.

The singularities of the integrand in Eq. (7) as a function of !l include the branch cut

of the square root, the poles of two propagators, and possible singularities of t(!l; E ,B) as
a function of !l. Excluding for the moment t(!l; E ,B), let us take stock of the rest of !l

singularities:

1. The branch cut given by
p
l2 � E =

p�!l, shown in Fig. 4 as the thick line that runs

along the positive real axis.

2. For each and every !q on C, there is a !l pole of the pion propagator (q2 � E + l2)�1 =

(E � !l � !q)�1. The whole set of these !l poles make up a line, represented by C 0 in

Fig. 4. Note that C and C 0 are symmetric about ! = E/2. If the two lines do not intersect
each other, the denominator of (E � !l � !q)�1 does not vanish for any !l or !q.

3. The pole of the dressed ⇤?
c propagator, !?(a, r), represented by the cross in Fig. 4.

As the starting point of C, E , moves downward and crosses the real axis, the second sheet

of E is defined. But C must deform continuously in such a way that it does not cross or

intersect any singularities listed above. Figure 5 illustrates one way to achieve this.

• First, we are free to bend the cut line of
p�!l (thick line in Fig. 5) so that it accommodates

the downward motion of E .

7

Instead of l2, looking at 

Branch cut 

C

C'

FIG. 4. The integration contour C and singularities of the integrand in the !-plane, when E is in

its first sheet. The thick line is Singularity (1), the dashed line C 0 Singularity (2), and the cross

Singularity (3) (see the text for detailed explanation).

It proves convenient to illustrate the contour with !l ⌘ E � l2, instead of l. Shown in Fig. 4,

as E approaches the real axis from above, the contour C starts at E and extends leftward

to infinity. Once the contour C is chosen, we can solve numerically for t(!q; E ,B), with
!q ⌘ E � q2 also running along C.

The singularities of the integrand in Eq. (7) as a function of !l include the branch cut

of the square root, the poles of two propagators, and possible singularities of t(!l; E ,B) as
a function of !l. Excluding for the moment t(!l; E ,B), let us take stock of the rest of !l

singularities:

1. The branch cut given by
p
l2 � E =

p�!l, shown in Fig. 4 as the thick line that runs

along the positive real axis.

2. For each and every !q on C, there is a !l pole of the pion propagator (q2 � E + l2)�1 =

(E � !l � !q)�1. The whole set of these !l poles make up a line, represented by C 0 in

Fig. 4. Note that C and C 0 are symmetric about ! = E/2. If the two lines do not intersect
each other, the denominator of (E � !l � !q)�1 does not vanish for any !l or !q.

3. The pole of the dressed ⇤?
c propagator, !?(a, r), represented by the cross in Fig. 4.

As the starting point of C, E , moves downward and crosses the real axis, the second sheet

of E is defined. But C must deform continuously in such a way that it does not cross or

intersect any singularities listed above. Figure 5 illustrates one way to achieve this.

• First, we are free to bend the cut line of
p�!l (thick line in Fig. 5) so that it accommodates

the downward motion of E .

7

Poles of 

C

C'

FIG. 4. The integration contour C and singularities of the integrand in the !-plane, when E is in

its first sheet. The thick line is Singularity (1), the dashed line C 0 Singularity (2), and the cross

Singularity (3) (see the text for detailed explanation).

It proves convenient to illustrate the contour with !l ⌘ E � l2, instead of l. Shown in Fig. 4,

as E approaches the real axis from above, the contour C starts at E and extends leftward

to infinity. Once the contour C is chosen, we can solve numerically for t(!q; E ,B), with
!q ⌘ E � q2 also running along C.

The singularities of the integrand in Eq. (7) as a function of !l include the branch cut

of the square root, the poles of two propagators, and possible singularities of t(!l; E ,B) as
a function of !l. Excluding for the moment t(!l; E ,B), let us take stock of the rest of !l

singularities:

1. The branch cut given by
p
l2 � E =

p�!l, shown in Fig. 4 as the thick line that runs

along the positive real axis.

2. For each and every !q on C, there is a !l pole of the pion propagator (q2 � E + l2)�1 =

(E � !l � !q)�1. The whole set of these !l poles make up a line, represented by C 0 in

Fig. 4. Note that C and C 0 are symmetric about ! = E/2. If the two lines do not intersect
each other, the denominator of (E � !l � !q)�1 does not vanish for any !l or !q.

3. The pole of the dressed ⇤?
c propagator, !?(a, r), represented by the cross in Fig. 4.

As the starting point of C, E , moves downward and crosses the real axis, the second sheet

of E is defined. But C must deform continuously in such a way that it does not cross or

intersect any singularities listed above. Figure 5 illustrates one way to achieve this.

• First, we are free to bend the cut line of
p�!l (thick line in Fig. 5) so that it accommodates

the downward motion of E .

7

C

C'

FIG. 4. The integration contour C and singularities of the integrand in the !-plane, when E is in

its first sheet. The thick line is Singularity (1), the dashed line C 0 Singularity (2), and the cross

Singularity (3) (see the text for detailed explanation).

It proves convenient to illustrate the contour with !l ⌘ E � l2, instead of l. Shown in Fig. 4,

as E approaches the real axis from above, the contour C starts at E and extends leftward

to infinity. Once the contour C is chosen, we can solve numerically for t(!q; E ,B), with
!q ⌘ E � q2 also running along C.

The singularities of the integrand in Eq. (7) as a function of !l include the branch cut

of the square root, the poles of two propagators, and possible singularities of t(!l; E ,B) as
a function of !l. Excluding for the moment t(!l; E ,B), let us take stock of the rest of !l

singularities:

1. The branch cut given by
p
l2 � E =

p�!l, shown in Fig. 4 as the thick line that runs

along the positive real axis.

2. For each and every !q on C, there is a !l pole of the pion propagator (q2 � E + l2)�1 =

(E � !l � !q)�1. The whole set of these !l poles make up a line, represented by C 0 in

Fig. 4. Note that C and C 0 are symmetric about ! = E/2. If the two lines do not intersect
each other, the denominator of (E � !l � !q)�1 does not vanish for any !l or !q.

3. The pole of the dressed ⇤?
c propagator, !?(a, r), represented by the cross in Fig. 4.

As the starting point of C, E , moves downward and crosses the real axis, the second sheet

of E is defined. But C must deform continuously in such a way that it does not cross or

intersect any singularities listed above. Figure 5 illustrates one way to achieve this.

• First, we are free to bend the cut line of
p�!l (thick line in Fig. 5) so that it accommodates

the downward motion of E .

7

Poles of  dressed Λc* prop. 

C

C'

FIG. 4. The integration contour C and singularities of the integrand in the !-plane, when E is in

its first sheet. The thick line is Singularity (1), the dashed line C 0 Singularity (2), and the cross

Singularity (3) (see the text for detailed explanation).

It proves convenient to illustrate the contour with !l ⌘ E � l2, instead of l. Shown in Fig. 4,

as E approaches the real axis from above, the contour C starts at E and extends leftward

to infinity. Once the contour C is chosen, we can solve numerically for t(!q; E ,B), with
!q ⌘ E � q2 also running along C.

The singularities of the integrand in Eq. (7) as a function of !l include the branch cut

of the square root, the poles of two propagators, and possible singularities of t(!l; E ,B) as
a function of !l. Excluding for the moment t(!l; E ,B), let us take stock of the rest of !l

singularities:

1. The branch cut given by
p
l2 � E =

p�!l, shown in Fig. 4 as the thick line that runs

along the positive real axis.

2. For each and every !q on C, there is a !l pole of the pion propagator (q2 � E + l2)�1 =

(E � !l � !q)�1. The whole set of these !l poles make up a line, represented by C 0 in

Fig. 4. Note that C and C 0 are symmetric about ! = E/2. If the two lines do not intersect
each other, the denominator of (E � !l � !q)�1 does not vanish for any !l or !q.

3. The pole of the dressed ⇤?
c propagator, !?(a, r), represented by the cross in Fig. 4.

As the starting point of C, E , moves downward and crosses the real axis, the second sheet

of E is defined. But C must deform continuously in such a way that it does not cross or

intersect any singularities listed above. Figure 5 illustrates one way to achieve this.

• First, we are free to bend the cut line of
p�!l (thick line in Fig. 5) so that it accommodates

the downward motion of E .
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l - singularities of 

amplitude, the first line of Fig. 2 translates into the following integral equation,

T (~q;E,E
⇤

, q
0

) = � h2m2

⇡

3f 2

⇡(E⇤

� q
0

+ i0)

+ ih2

m2

⇡

3f 2

⇡

Z
d4l

(2⇡)4
1

E � q
0

� l
0

+ i0

1

2m⇡l0 �~l 2 + i0

⇥ T (~l;E,E
⇤

, l
0

)

E � l
0

� � � ✏h2

p�2(E � l
0

)m⇡ � i0 + i0
,

(6)

where l2
0

has been dropped o↵ in the pion propagator, since l
0

⇠ ~l2/2m⇡. Integrating over

l
0

and the angular part of ~l, setting q
0

= ~q2/2m⇡ to define t(q; E ,B) ⌘ T (~q;E,E
⇤

, q2/2m⇡),

we arrive at

t(q; E ,B) = 8⇡/|r|
3(q2 + B) +

2

3⇡

Z

⌃l

dl
l2

q2 � E + l2 + i0

⇥ t(l; E ,B)
� 1

a � |r|
2

(E � l2) +
p
l2 � E � i0� i0

,
(7)

where E ⌘ 2m⇡E, B ⌘ �2m⇡E⇤

, and the ⇡⌃c scattering length and e↵ective range have

been used to make the notation more compact. The subscript ⌃l serves to remind that

in order to continue t(q; E ,B) to the complex E plane, we need to deform the integration

contour away from the positive real axis. Since we are only interested in extracting the pole

position, the field renormalization constants of ⇡ and  are not accounted for.

The integral in Eq. (7) actually converges. To see this, note that the q dependence on

the right hand side suggests that when q ! 1, t(q; E ,B) vanishes as fast as q�2. The

convergence is also confirmed numerically. It is rather important that the pole position

extracted is independent of the way the integral is regularized, for we can then state with

confidence that the sought-after hadronic structure does not come out of modeling short-

range QCD physics.

When searching for the poles of t(q; E ,B) as a function of E , we can assign any values to

q2 and B, so long as the ⌃c pole of the driving term in Eq. (7) is avoided, i.e., q2 + B 6= 0.

For definitiveness, I use q2 = E + B, which corresponds to on-shell external pions. But this

does not fix the values for both q2 and B. We will see later another choice to be made upon

B to make our life easier.

The main technical challenge of the work is to continue analytically the above integral

equation into the complex E plane. The key is to deform tactfully the integration contour so

that, as E moves into its second sheet, it does not interfere any singularities of the integrand.
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Deform the contour so as 
NOT to cross any 

singularities of the integrand



Deforming contour

Solid line: contour in omega plane 

Thick line: square root cut 

Dashed line:                cut as a func. of l 

Cross: poles of dressed prop. 

Be wary of “standard” procedures (e.g. Peace & Afnan)

C

C'

FIG. 5. The deformed integration contour C when E moves into its second sheet. The symbols are

the same as in Fig. 4, but the label !? is omitted to avoid clustering of symbols.

• Second, C always circumvents counterclockwise the origin from above so that C and C 0

do not intersect each other.

• Third, C must not cross through !?. But when E = !?, the contour can in no way avoid

!?, for its starting point sits on !?. This so-called end-point singularity of t(!q; E ,B), as
a function of E , is the branch point that marks the ⇡⇤?

c threshold, and the cut line is

chosen conventionally to run horizontally to +1. To reflect this choice of cut line, we

let C circumvent clockwise !?, when E is to the southeast of !?, i.e., Re(E � !?) < 0

and Im(E � !?) < 0. This can be implemented by adding to the contour a clockwise

infinitesimal circle around !?.

Now back to the singularities of t(!l; E ,B) as a function of !l. Inspecting the q dependence

of the right hand side of Eq. (7), we find that the driving term / (q2 + B)�1 contributes a

pole at !q = E+B to t(!q; E ,B) as a function of !q. Therefore, the contour C must not cross

(E+B). On the other hand, it is at our disposal to choose the value for B. The non-crossing
requirement is most conveniently met by letting B have negative values for both real and

imaginary parts: ReB < 0 and ImB < 0.

The other important singularity of t(!q; E ,B) as a function of !q stems from the ⌃c

propagator of the integrand (q2�E+ l2)�1 = (E�!l�!q)�1. For !l always starts at !l = E ,
!q = 0 is an end-point singularity of t(!q; E ,B) as a function of !q, more precisely, a branch

point. The associated cut line is defined by the values of !q that take the ⌃c propagator

on-shell: !cut

q = E � !l. Since !l runs along C, it follows that the cut line of t(!q; E ,B)
is exactly C 0, the line that is symmetric with C about E/2. And the contour C must not

8

C

C'

FIG. 4. The integration contour C and singularities of the integrand in the !-plane, when E is in

its first sheet. The thick line is Singularity (1), the dashed line C 0 Singularity (2), and the cross

Singularity (3) (see the text for detailed explanation).

It proves convenient to illustrate the contour with !l ⌘ E � l2, instead of l. Shown in Fig. 4,

as E approaches the real axis from above, the contour C starts at E and extends leftward

to infinity. Once the contour C is chosen, we can solve numerically for t(!q; E ,B), with
!q ⌘ E � q2 also running along C.

The singularities of the integrand in Eq. (7) as a function of !l include the branch cut

of the square root, the poles of two propagators, and possible singularities of t(!l; E ,B) as
a function of !l. Excluding for the moment t(!l; E ,B), let us take stock of the rest of !l

singularities:

1. The branch cut given by
p
l2 � E =

p�!l, shown in Fig. 4 as the thick line that runs

along the positive real axis.

2. For each and every !q on C, there is a !l pole of the pion propagator (q2 � E + l2)�1 =

(E � !l � !q)�1. The whole set of these !l poles make up a line, represented by C 0 in

Fig. 4. Note that C and C 0 are symmetric about ! = E/2. If the two lines do not intersect
each other, the denominator of (E � !l � !q)�1 does not vanish for any !l or !q.

3. The pole of the dressed ⇤?
c propagator, !?(a, r), represented by the cross in Fig. 4.

As the starting point of C, E , moves downward and crosses the real axis, the second sheet

of E is defined. But C must deform continuously in such a way that it does not cross or

intersect any singularities listed above. Figure 5 illustrates one way to achieve this.

• First, we are free to bend the cut line of
p�!l (thick line in Fig. 5) so that it accommodates

the downward motion of E .
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amplitude, the first line of Fig. 2 translates into the following integral equation,

T (~q;E,E
⇤

, q
0

) = � h2m2

⇡

3f 2

⇡(E⇤

� q
0

+ i0)

+ ih2

m2

⇡

3f 2

⇡

Z
d4l

(2⇡)4
1

E � q
0

� l
0

+ i0

1

2m⇡l0 �~l 2 + i0

⇥ T (~l;E,E
⇤

, l
0

)

E � l
0

� � � ✏h2

p�2(E � l
0

)m⇡ � i0 + i0
,

(6)

where l2
0

has been dropped o↵ in the pion propagator, since l
0

⇠ ~l2/2m⇡. Integrating over

l
0

and the angular part of ~l, setting q
0

= ~q2/2m⇡ to define t(q; E ,B) ⌘ T (~q;E,E
⇤

, q2/2m⇡),

we arrive at

t(q; E ,B) = 8⇡/|r|
3(q2 + B) +

2

3⇡

Z

⌃l

dl
l2

q2 � E + l2 + i0

⇥ t(l; E ,B)
� 1

a � |r|
2

(E � l2) +
p
l2 � E � i0� i0

,
(7)

where E ⌘ 2m⇡E, B ⌘ �2m⇡E⇤

, and the ⇡⌃c scattering length and e↵ective range have

been used to make the notation more compact. The subscript ⌃l serves to remind that

in order to continue t(q; E ,B) to the complex E plane, we need to deform the integration

contour away from the positive real axis. Since we are only interested in extracting the pole

position, the field renormalization constants of ⇡ and  are not accounted for.

The integral in Eq. (7) actually converges. To see this, note that the q dependence on

the right hand side suggests that when q ! 1, t(q; E ,B) vanishes as fast as q�2. The

convergence is also confirmed numerically. It is rather important that the pole position

extracted is independent of the way the integral is regularized, for we can then state with

confidence that the sought-after hadronic structure does not come out of modeling short-

range QCD physics.

When searching for the poles of t(q; E ,B) as a function of E , we can assign any values to

q2 and B, so long as the ⌃c pole of the driving term in Eq. (7) is avoided, i.e., q2 + B 6= 0.

For definitiveness, I use q2 = E + B, which corresponds to on-shell external pions. But this

does not fix the values for both q2 and B. We will see later another choice to be made upon

B to make our life easier.

The main technical challenge of the work is to continue analytically the above integral

equation into the complex E plane. The key is to deform tactfully the integration contour so

that, as E moves into its second sheet, it does not interfere any singularities of the integrand.
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⇒
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Re eE

Im eE

FIG. 6. As �̃ changes, the pole trajectory of the ⌃(⇡⇡⌃c,
1

2

). From left to right, the filled circles

correspond to �̃ = �1,�2,�3,�4, respectively. (See the text for more detailed definitions of eE and

�̃.)

insect C 0 because we have just established that C 0 is a branch cut of t(!l; E ,B) as a function

of !l. But we had already made sure of that. Therefore, the contour C in Fig. 5 will do just

fine even with the singularities of t(!l; E ,B) taken into account, provided that both real and

imaginary parts of B are negative.

Numerical calculations indeed indicate that there exists a resonance state with I(JP ) =

1(1
2

+

), situated near the ⇡⇡⌃c threshold. I denote this state by ⌃(⇡⇡⌃c,
1

2

) in the present

paper. Its existence is manifested by the resonance pole of ⇡⇤?
c ! ⇡⇤?

c amplitude. A

mathematically compact way to present the pole position is to define dimensionless quantities

eE ⌘ E/(✏h2m⇡)
2, �̃ ⌘ �/(✏2h4m⇡) , (8)

and to show how the pole position in the eE plane varies with �̃,

eE
pole

= eE
pole

(�̃) .

Figure 6 shows the pole trajectory as �̃ varies from �4 to �1.

Because ⇤?
c is only a couple of MeVs away from the ⇡⌃c threshold, its properties h2 and

�, determined from the pionic decay data, are sensitive to the mass splitting between ⇡0 and

⇡±. Before a more accurate calculation is carried out [7], we can have a flavor of the pole

position of ⌃(⇡⇡⌃c,
1

2

) by applying two sets of parameters to the present isospin-invariant

calculation, with the isospin-averaged pion and ⌃c masses adopted, m⇡ = 138.0 MeV and

9

(BwL ’16)

3B pole trajectory as a varies, with |r|-1 as unit 

|r|/a = -4 ~ -1

3-body resonance pole

eE ⌘ 2m⇡Er2



Results

M
⌃c �M

⇤

+
c
= 167.1 MeV. One has a higher ⇤?

c mass [8]:

M
⇤

?
c
�M

⇤

+
c
= 308.7MeV , h2 =

3

2
⇥ 0.30 , (9)

which gives ⌃(⇡⇡⌃c,
1

2

) the following pole position,

M
⌃(⇡⇡⌃c,

1
2 )
� (M

⌃c + 2m⇡) = (4.00� 5.72i)MeV . (10)

The other is from Ref. [9]:

M
⇤

?
c
�M

⇤

+
c
= 305.8MeV , h2 =

3

2
⇥ 0.36 , (11)

resulting in the pole being situated slightly below the ⇡⇡⌃c threshold,

M
⌃(⇡⇡⌃c,

1
2 )
� (M

⌃c + 2m⇡) = (�0.45� 0.02i)MeV . (12)

How close the ⌃(⇡⇡⌃c,
1

2

) pole is to the ⇡⇡⌃c threshold is sensitive to the values of h2 and �,

but it should not a↵ect as much the phenomenology of more realistic decay modes ⇤+

c ⇡⇡⇡

and ⇤+

c ⇡⇡, as opposed to ⌃c⇡⇡. This is because the threshold of, say, ⇤+

c ⇡⇡⇡ is ' 30 MeV

lower than ⌃(⇡⇡⌃c,
1

2

), much larger than the uncertainty of its pole position.

If we replace ⌃c and ⇤?
c with their spin-3/2 partners, ⌃c(2520) and ⇤+

c (2625), and repeat

the above analysis, it is likely to find the spin-3/2 partner of the ⌃(⇡⇡⌃c,
1

2

), with a mass

a few tens of MeVs heavier. If this turns to be the case, it is conceivable to identify the

pair with the lower broad peak, labeled by ⇤+

c (2765) in Ref. [1], and observed by CLEO in

decays into ⇤+

c ⇡
�⇡+ [10] where it was not ruled out that the peak could be two overlapping

states. Studies based on quark models related to ⇤+

c (2765) can be found in, for examples,

Refs. [11, 12].

While a more careful confrontation with the invariant mass spectrum data is underway [7]

to determine whether ⇤+

c (2765) is indeed ⌃(⇡⇡⌃c,
1

2

) or the overlapping of ⌃(⇡⇡⌃c,
1

2

) and

its spin-3/2 partner, I point out here that the decay of ⌃(⇡⇡⌃c,
1

2

) into ⇤+

c ⇡
�⇡+ is possible,

with the dominant contribution illustrated in Fig. 7. From left to right, the first solid line

represents a ⌃c intermediate state that is above its energy shell by about 2m⇡. After emitting

a pion, the ⌃c could become on-shell, either remaining to be itself or turning into ⌃c(2520).

Then the ⌃c or ⌃c(2520) decays into ⇤+

c ⇡. This decay mechanism is consistent with the

finding of Ref. [10] that ⇤+

c (2765) appears to resonate through ⌃c and probably also ⌃?
c .
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M
⌃c �M

⇤

+
c
= 167.1 MeV. One has a higher ⇤?

c mass [8]:

M
⇤

?
c
�M

⇤

+
c
= 308.7MeV , h2 =

3

2
⇥ 0.30 , (9)

which gives ⌃(⇡⇡⌃c,
1

2

) the following pole position,

M
⌃(⇡⇡⌃c,

1
2 )
� (M

⌃c + 2m⇡) = (4.00� 5.72i)MeV . (10)

The other is from Ref. [9]:

M
⇤

?
c
�M

⇤

+
c
= 305.8MeV , h2 =

3

2
⇥ 0.36 , (11)

resulting in the pole being situated slightly below the ⇡⇡⌃c threshold,

M
⌃(⇡⇡⌃c,

1
2 )
� (M

⌃c + 2m⇡) = (�0.45� 0.02i)MeV . (12)

How close the ⌃(⇡⇡⌃c,
1

2

) pole is to the ⇡⇡⌃c threshold is sensitive to the values of h2 and �,

but it should not a↵ect as much the phenomenology of more realistic decay modes ⇤+

c ⇡⇡⇡

and ⇤+

c ⇡⇡, as opposed to ⌃c⇡⇡. This is because the threshold of, say, ⇤+

c ⇡⇡⇡ is ' 30 MeV

lower than ⌃(⇡⇡⌃c,
1

2

), much larger than the uncertainty of its pole position.

If we replace ⌃c and ⇤?
c with their spin-3/2 partners, ⌃c(2520) and ⇤+

c (2625), and repeat

the above analysis, it is likely to find the spin-3/2 partner of the ⌃(⇡⇡⌃c,
1

2

), with a mass

a few tens of MeVs heavier. If this turns to be the case, it is conceivable to identify the

pair with the lower broad peak, labeled by ⇤+

c (2765) in Ref. [1], and observed by CLEO in

decays into ⇤+

c ⇡
�⇡+ [10] where it was not ruled out that the peak could be two overlapping

states. Studies based on quark models related to ⇤+

c (2765) can be found in, for examples,

Refs. [11, 12].

While a more careful confrontation with the invariant mass spectrum data is underway [7]

to determine whether ⇤+

c (2765) is indeed ⌃(⇡⇡⌃c,
1

2

) or the overlapping of ⌃(⇡⇡⌃c,
1

2

) and

its spin-3/2 partner, I point out here that the decay of ⌃(⇡⇡⌃c,
1

2

) into ⇤+

c ⇡
�⇡+ is possible,

with the dominant contribution illustrated in Fig. 7. From left to right, the first solid line

represents a ⌃c intermediate state that is above its energy shell by about 2m⇡. After emitting

a pion, the ⌃c could become on-shell, either remaining to be itself or turning into ⌃c(2520).

Then the ⌃c or ⌃c(2520) decays into ⇤+

c ⇡. This decay mechanism is consistent with the

finding of Ref. [10] that ⇤+

c (2765) appears to resonate through ⌃c and probably also ⌃?
c .
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(CDF ’11)

⇒

(BwL ’16)

M
⌃c �M

⇤

+
c
= 167.1 MeV. One has a higher ⇤?

c mass [8]:

M
⇤

?
c
�M

⇤

+
c
= 308.7MeV , h2 =

3

2
⇥ 0.30 , (9)

which gives ⌃(⇡⇡⌃c,
1

2

) the following pole position,

M
⌃(⇡⇡⌃c,

1
2 )
� (M

⌃c + 2m⇡) = (4.00� 5.72i)MeV . (10)

The other is from Ref. [9]:

M
⇤

?
c
�M

⇤

+
c
= 305.8MeV , h2 =

3

2
⇥ 0.36 , (11)

resulting in the pole being situated slightly below the ⇡⇡⌃c threshold,

M
⌃(⇡⇡⌃c,

1
2 )
� (M

⌃c + 2m⇡) = (�0.45� 0.02i)MeV . (12)

How close the ⌃(⇡⇡⌃c,
1

2

) pole is to the ⇡⇡⌃c threshold is sensitive to the values of h2 and �,

but it should not a↵ect as much the phenomenology of more realistic decay modes ⇤+

c ⇡⇡⇡

and ⇤+

c ⇡⇡, as opposed to ⌃c⇡⇡. This is because the threshold of, say, ⇤+

c ⇡⇡⇡ is ' 30 MeV

lower than ⌃(⇡⇡⌃c,
1

2

), much larger than the uncertainty of its pole position.

If we replace ⌃c and ⇤?
c with their spin-3/2 partners, ⌃c(2520) and ⇤+

c (2625), and repeat

the above analysis, it is likely to find the spin-3/2 partner of the ⌃(⇡⇡⌃c,
1

2

), with a mass

a few tens of MeVs heavier. If this turns to be the case, it is conceivable to identify the

pair with the lower broad peak, labeled by ⇤+

c (2765) in Ref. [1], and observed by CLEO in

decays into ⇤+

c ⇡
�⇡+ [10] where it was not ruled out that the peak could be two overlapping

states. Studies based on quark models related to ⇤+

c (2765) can be found in, for examples,

Refs. [11, 12].

While a more careful confrontation with the invariant mass spectrum data is underway [7]

to determine whether ⇤+

c (2765) is indeed ⌃(⇡⇡⌃c,
1

2

) or the overlapping of ⌃(⇡⇡⌃c,
1

2

) and

its spin-3/2 partner, I point out here that the decay of ⌃(⇡⇡⌃c,
1

2

) into ⇤+

c ⇡
�⇡+ is possible,

with the dominant contribution illustrated in Fig. 7. From left to right, the first solid line

represents a ⌃c intermediate state that is above its energy shell by about 2m⇡. After emitting

a pion, the ⌃c could become on-shell, either remaining to be itself or turning into ⌃c(2520).

Then the ⌃c or ⌃c(2520) decays into ⇤+

c ⇡. This decay mechanism is consistent with the

finding of Ref. [10] that ⇤+

c (2765) appears to resonate through ⌃c and probably also ⌃?
c .
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(Chiladze & Falk ’97)

M
⌃c �M

⇤

+
c
= 167.1 MeV. One has a higher ⇤?

c mass [8]:

M
⇤

?
c
�M

⇤

+
c
= 308.7MeV , h2 =

3

2
⇥ 0.30 , (9)

which gives ⌃(⇡⇡⌃c,
1

2

) the following pole position,

M
⌃(⇡⇡⌃c,

1
2 )
� (M

⌃c + 2m⇡) = (4.00� 5.72i)MeV . (10)

The other is from Ref. [9]:

M
⇤

?
c
�M

⇤

+
c
= 305.8MeV , h2 =

3

2
⇥ 0.36 , (11)

resulting in the pole being situated slightly below the ⇡⇡⌃c threshold,

M
⌃(⇡⇡⌃c,

1
2 )
� (M

⌃c + 2m⇡) = (�0.45� 0.02i)MeV . (12)

How close the ⌃(⇡⇡⌃c,
1

2

) pole is to the ⇡⇡⌃c threshold is sensitive to the values of h2 and �,

but it should not a↵ect as much the phenomenology of more realistic decay modes ⇤+

c ⇡⇡⇡

and ⇤+

c ⇡⇡, as opposed to ⌃c⇡⇡. This is because the threshold of, say, ⇤+

c ⇡⇡⇡ is ' 30 MeV

lower than ⌃(⇡⇡⌃c,
1

2

), much larger than the uncertainty of its pole position.

If we replace ⌃c and ⇤?
c with their spin-3/2 partners, ⌃c(2520) and ⇤+

c (2625), and repeat

the above analysis, it is likely to find the spin-3/2 partner of the ⌃(⇡⇡⌃c,
1

2

), with a mass

a few tens of MeVs heavier. If this turns to be the case, it is conceivable to identify the

pair with the lower broad peak, labeled by ⇤+

c (2765) in Ref. [1], and observed by CLEO in

decays into ⇤+

c ⇡
�⇡+ [10] where it was not ruled out that the peak could be two overlapping

states. Studies based on quark models related to ⇤+

c (2765) can be found in, for examples,

Refs. [11, 12].

While a more careful confrontation with the invariant mass spectrum data is underway [7]

to determine whether ⇤+

c (2765) is indeed ⌃(⇡⇡⌃c,
1

2

) or the overlapping of ⌃(⇡⇡⌃c,
1

2

) and

its spin-3/2 partner, I point out here that the decay of ⌃(⇡⇡⌃c,
1

2

) into ⇤+

c ⇡
�⇡+ is possible,

with the dominant contribution illustrated in Fig. 7. From left to right, the first solid line

represents a ⌃c intermediate state that is above its energy shell by about 2m⇡. After emitting

a pion, the ⌃c could become on-shell, either remaining to be itself or turning into ⌃c(2520).

Then the ⌃c or ⌃c(2520) decays into ⇤+

c ⇡. This decay mechanism is consistent with the

finding of Ref. [10] that ⇤+

c (2765) appears to resonate through ⌃c and probably also ⌃?
c .
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FIG. 7. The decay of ⌃(⇡⇡⌃c,
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FIG. 1. The upper histogram shows DMpp !
M!L1

c p1p2" 2 M!L1
c " above the Lc1 range; the fit is

to a quadratic background shape plus two Gaussian signal
functions. The lower histogram shows the same distribution for
scaled L1

c sidebands, fit to a quadratic background shape.

Gaussian detector resolution function, we obtain a width of
G ! 4 6 2 6 2 MeV, where the uncertainties are statis-
tical and systematic, respectively. The dominant system-
atic uncertainty comes from uncertainties in the detector
resolution function. This experimental width is not sig-
nificantly different from zero; we place an upper limit of
G , 8 MeV at 90% confidence level. We estimate the sys-
tematic uncertainty on the mass difference measurement of
the upper state to be 62 MeV, due principally to uncer-
tainties in the momenta measurements and differences in
the mass obtained using different fitting procedures.

To help identify these new states, we investigate
whether the decays proceed via intermediate Sc and/or
S!

c baryons. There is very little isospin splitting in
the masses of these intermediate states, and, by isospin
conservation, we expect equally many decays to proceed
via a doubly charged S

!!"
c as via a neutral one. To search

for resonant substructure in the upper, narrower, state we
use a signal mass band of 589 , DMpp , 603 MeV
and sidebands of 527 , DMpp , 575 MeV and
617 , DMpp , 665 MeV. This signal band has a signal
yield of 314 6 50. We then plot the single p mass differ-
ence, DMp ! M!L1

c p6" 2 M!L1
c " for both transition

pions in the signal region and subtract the sideband data,
appropriately scaled. The resultant plot (Fig. 2) is fit to a
sum of a polynomial background and two signal shapes
for the Sc and S!

c baryons, with these shapes obtained
by fitting the inclusive DMp plot, i.e., without any cut
on DMpp . The signal yields obtained by the fit are
96 6 18 and 234 6 28 events, respectively. This gives
a fraction of this state proceeding via an intermediate Sc
of !31 6 6 6 3"%, and an upper limit on the fraction
proceeding through S!

c of 11% at 90% confidence level.
The dominant contribution to the systematic uncertainty in
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FIG. 2. DMp ! M!L1
c p6" 2 M!L1

c " in the upper resonance
region, after sideband subtraction.

the Sc fraction is from our fitting procedures. We cannot
perform the same analysis for the lower state because the
low Q2 of the decays makes kinematic reflections in the
DMp mass difference plots that the subtraction procedure
cannot remove.

We also display the data by first making a requirement
of 163 , DMp , 171 MeV and then plotting the dipion
mass difference DMpp [see Fig. 3(a)]. This requirement
includes most of the decays that proceed via a Sc, but ex-
cludes the majority that decay nonresonantly to L1

c p1p2.
Figure 3(a) is fit to a sum of the two signal peaks, us-
ing fixed signal shapes and masses that were found from
Fig. 1, and a polynomial background shape. The yields

FIG. 3. DMpp ! M!L1
c p1p2" 2 M!L1

c " with cuts as fol-
lows: (a) DMp ! M!L1

c p" 2 M!L1
c " is consistent with that

expected for a Sc, and (b) DMp ! M!L1
c p" 2 M!L1

c " is con-
sistent with that expected for a S!

c. In both cases, the lower
histogram is that obtained using scaled Lc sidebands.
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c ⇡
�⇡+. The blob represents the composite structure

of ⌃(⇡⇡⌃c,
1

2

). The symbols are the same as in Fig. 1, except for those solid-line states labeled

explicitly otherwise.
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represents a ⌃c intermediate state that is above its energy shell by about 2m⇡. After emitting

a pion, the ⌃c could become on-shell, either remaining to be itself or turning into ⌃c(2520).
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Summary

Λc(2595)+ a near-threshold S-wave resonance coupled to πΣc 

Strong attraction of very soft pions to Σc  : A extremely rare 
realization of S-wave resonant interaction with both large a and r 

Thanks to chiral symmetry, only one fine-tuning needed 

It helps form a shallow ππΣc resonance 

More molecular states with this soft-pion attraction?


