RHIQCD2016 Symposium@YITP, Nov. 28, 2016

Studies of exotic baryons with hadron beams at J-PARC

Hiroyuki Noumi RCNP, Osaka Univ./IPNS, KEK

Today's Exotic Baryons

- A(1405)
 - With a Low-E Kaon beam
 - K^{bar}N interaction and exotic hyperon
 - With a High-E pion beam
 - production and exotic hyperon

• P_c^0

With a High-E pion beam

Still $\Lambda(1405)$?

- K^{bar}N int. and its pole position are still unclear.
 Basic information on Kaonic Nuclei
- Not yet demonstrated if it is a molecular state.
 - Needed to establish it as an exotic state
 - Hadron Picture in excited states
 - New question related to classification in CQM
 - Formation probability in hadronization
 - ExHIC (Phys.Rev. C84 (2011) 064910)

E31 aims at:

■ measuring an *S*-wave $\overline{K}N \to \pi\Sigma$ scattering below the $\overline{K}N$ threshold in the $d(K^{-},n)\pi\Sigma$ reactions at a forward angle of *n*.

ID's all the final states to decompose the I=0 and 1 ampl's.

$\pi^{\pm}\Sigma^{\mp}$	I=0, 1	Λ (1405) (I=0, S wave), non-resonant[I=0/1] (Σ (1385) (I=1, P wave) to be suppressed)
$\pi^{-}\Sigma^{0}$ $[\pi^{-}\Lambda]$	I=1	non-resonant (Σ (1385) to be suppressed) $d(K^{-},p)\pi^{-}\Sigma^{0}[\pi^{-}\Lambda]$
$\pi^0 \Sigma^0$	I=0	Λ (1405) (I=0, S wave), non-resonant

Experimental Setup for E31

Schematic Drawings of Detectors

• Event topology of $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$

Schematic Drawings of Detectors

• Event topology of $d(K^-, p)X_{\pi^-\Sigma^0}$

$\pi^+\Sigma^-/\pi^-\Sigma^+$ Average (I = 0, 1) V.S. $\pi^-\Sigma^0$ Mode (I = 1)

• The I=0 amplitude seems dominant.

$\Lambda(1405): 1405.1^{+1.3} \text{ MeV (PDG Part. List'gs)}$ $J^{p} = \frac{1}{2}, I = 0, M_{\Lambda(1405)}, M_{K^{bar}N}$, lightest in neg. parity baryons

M. Hassanvand et al: $\pi\Sigma$ IM Spec. of pp $\rightarrow K^+\pi\Sigma$ J. Esmaili et al: $\pi\Sigma$ IM Spec. of Stopped K⁻ on ⁴He R.H. Dalitz et al: $\pi\Sigma$ IM Spec. in K-p $\rightarrow \pi\pi\Sigma$ w/ M-matrix

Pole Structure of the Lambda(1405) Region PDG Reviews: Ulf-G. Meissner and T. Hyodo (Nov. 2015)

Table 1: Comparison of the pole positions of $\Lambda(1405)$ in the complex energy plane from nextto-leading order chiral unitary coupled-channel approaches including the SIDDHARTA constraint.

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. 11,12, NLO	$1424_{-23}^{+7} - i\ 26_{-14}^{+3}$	$1381^{+18}_{-6} - i \ 81^{+19}_{-8}$
Ref. 14, Fit II	$1421_{-2}^{+3} - i \ 19_{-5}^{+8}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$
Ref. 15, solution $#2$	$1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5} - i \ 56^{+17}_{-11}$
Ref. 15, solution $#4$	$1429_{-7}^{+8} - i \ 12_{-3}^{+2}$	$1325^{+15}_{-15} - i \ 90^{+12}_{-18}$

$\pi^+\Sigma^-/\pi^-\Sigma^+$ Average (I = 0, 1) V.S. $\pi^-\Sigma^0$ Mode (I = 1)

• The I=0 amplitude seems dominant.

S-wave resonances below KN threshold from the current analysis

HK, Nakamura, Lee, Sato, PRC92(2015)025205

NOTE: Further extensive analysis including the data below KN threshold is necessary to have *conclusive* results for the KN subthreshold region.

"Predicted" Λ* (J^p = 1/2-) resonance poles below KN threshold

Remarks of E31 1st Run

• Structures below and above the $\overline{K}N$ threshold are observed in $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$

– Interference btw I=0 and 1.

Pure I=1 channel, d(K⁻, p)X_{π⁻Σ⁰}, is observed.
 - I=0 amp. seems dominant in π[±]Σ[∓] modes, assuming similarity of the reaction mechanism among d(K⁻, n)X_{π[±]Σ[∓]} and d(K⁻, p)X_{π⁻Σ⁰}.

In E31 2nd Run

• To measure a Pure I=0 channel, $d(K^-, n)X_{\pi^0\Sigma^0}$

Further studies on $\Lambda(1405)$

• Angular dependence of $d(K^-, n)X_{(\pi\Sigma)^0}$ - "Sticking probability" of \overline{K} to a residual N

 $I(q_{eff}; b_0) = |\langle f(b_0) | j_0(q_{eff}r/\hbar) | i \rangle|^2$ $f(h_0) = Nove(-\pi^2/\hbar^2) \cdot S_{MOV}(h_0) | i \rangle | i \rangle$

 $f(b_0) \sim N \exp(-r^2/b_0^2)$: S wave final state

 q_{eff} : mom. transfer (angular dependent)

The larger b_0 , the steeper angular dependence.

Further studies on $\Lambda(1405)$

• $\Lambda(1405)$ production in Hard process (at large *s*, *t*) : - quark counting rule: $d\sigma/d\Omega|_{\theta=90^o} \sim 1/s^{n-2}$

High-res., High-momentum Beam Line

In Summary

- A low-*E* K^{bar} beam is used for studying hyperon resonances below K^{bar}N threshold.
 - $d(K^-, n)X_{\pi^{\pm}\Sigma^{\mp}}$ demonstrates an *S*-wave $\overline{K}N \to \pi\Sigma$ scattering, showing the I=0 dominance.
 - A structure around the K^{bar}N threshold is observed.
 - A pole position will be determined by the spectra.
- Further studies are necessary:
 - $d(K^{-}, n)X_{\pi^{0}\Sigma^{0}}$ will be measured next year.
 - Meas. of Angular distribution → form factor (under consideration)
 - Λ(1405) production in Hard process will be measured at the high-p beam line at J-PARC, which may give "# of quarks" in it.