Λ_c baryon in nuclear matter from QCD sum rule

Tokyo Institute of Technology Keisuke Ohtani

Collaborators: Kenji Araki, Makoto Oka

- Introduction
- • Λ_c QCD sum rules
- •OPE of Λ_c correlation function
- •Results
- •Summary

Hadrons in nuclear matter

- Interaction between probe hadron and nucleon
- The relation between hadron mass and the spontaneous breaking of chiral symmetry

The relation between hadron mass and the spontaneous breaking of chiral symmetry

In this study, we investigate Λ_c baryon in nuclear matter.

New points in Λ_c baryon

New points in Λ_c baryon

The diquark properties can be investigated.

In vacuum

In nuclear matter

"Partial restoration of chiral symmetry"

We investigate the mass shift of Λ_c in nuclear matter and discuss the relation between the diquark and partial restoration of chiral symmetry.

In vacuum

In nuclear matter

"Partial restoration of chiral symmetry"

Analysis method: QCD sum rule

	$\lambda_{\Lambda_c} [\text{GeV}^\circ]$	λ_{Λ_c} [GeV ^o]	m_{Λ_c} [GeV]	m_{Λ_c} [GeV]	Σ_{Λ_c} [MeV]	Σ_{Λ_c} [MeV]
K. Azizi et al.,	0.044 ± 0.012	0.023 ± 0.007	2.235 ± 0.244	1.434 ± 0.203	327 ± 98	-801
Z. G. Wang	0.022 ± 0.002	0.021 ± 0.001	$2.284\substack{+0.049\\-0.078}$	$2.335\substack{+0.045\\-0.072}$	34 ± 1	51

- There are large discrepancies in the results.
- The equations of OPE do not consist with each other.

Results in Vacuum Results in nuclear matter

- Recalculation of OPE
 - α_{s} corrections (NLO)

S. Groote, et al., Eur. Phys. J. C58, 355 (2008) Up to dimension 8 condensate (higher order contribution)

Parity projection

Correlation function:
$$\Pi(q) = i \int e^{iqx} \langle 0|T[J_{\Lambda_c}(x)\overline{J}_{\Lambda_c}(0)]|0\rangle d^4x$$

 Λ_c interpolating operator: $J_{\Lambda_c} = \epsilon^{abc}(u^{Ta}C\gamma_5 d^b)c^c$
Good diquark (Schematic figure)

(Scalar diquark)

(Schematic ligure)

Correlation function:
$$\Pi(q) = i \int e^{iqx} \langle 0|T[J_{\Lambda_c}(x)\overline{J}_{\Lambda_c}(0)]|0 \rangle d^4x$$

Parity projected
QCD sum rule
Gaussian sum rule: $G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \underline{\rho(q_0)} dq_0$
Hadronic spectral function
 $\rho(q_0)$
 $p(q_0)$
 $p(q_0) = |\lambda|^2 \delta(q_0 - m_{\Lambda_c}) + Continuum(\propto \theta(q_0 - q_{th}))$

Correlation function:
$$\Pi(q) = i \int e^{iqx} \langle 0|T[J_{\Lambda_c}(x)\overline{J}_{\Lambda_c}(0)]|0\rangle d^4x$$
Parity projected $J_{\Lambda_c} = \epsilon^{abc}(u^{Ta}C\gamma_5 d^b)c^c$
QCD sum rule $J_{\Lambda_c} = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$
Gaussian sum rule: $\underline{G_{OPE}(\tau)} = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$

Correlation function:
$$\Pi(q) = i \int e^{iqx} \langle 0|T[J_{\Lambda_c}(x)\overline{J}_{\Lambda_c}(0)]|0\rangle d^4x$$

Parity projected $J_{\Lambda_c} = \epsilon^{abc}(u^{Ta}C\gamma_5 d^b)c^c$
QCD sum rule $J_{\Lambda_c} = \epsilon^{abc}(u^{Ta}C\gamma_5 d^b)c^c$
Gaussian sum rule: $\underline{G_{OPE}(\tau)} = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \underline{\rho(q_0)} dq_0$

Calculated by operator product - expansion(OPE)

Non-perturbative contributions are expressed by condensates.

$$\langle \overline{q}q \rangle \ \langle \frac{\alpha_s}{\pi} G^2 \rangle \ \langle \overline{q}q\overline{q}q \rangle \ \cdots$$

(In vacuum)

Correlation function:
$$\Pi(q) = i \int e^{iqx} \langle 0|T[J_{\Lambda_c}(x)\overline{J}_{\Lambda_c}(0)]|0\rangle d^4x$$

Parity projected
QCD sum rule
Gaussian sum rule: $G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$

Non-perturbative contributions are expressed by condensates.

$$\langle \overline{q}q \rangle \ \langle \frac{\alpha_s}{\pi} G^2 \rangle \ \langle \overline{q}q\overline{q}q \rangle \ \cdots$$
 (In vacuum)

Condensates have the density dependence.

In-medium effects can be expressed by the in-medium modifications of the condensates.

OPE of Λ_c correlation function

Correlation function:
$$\Pi(q) = i \int e^{iqx} \langle 0|T[J_{\Lambda_c}(x)\overline{J}_{\Lambda_c}(0)]|0\rangle d^4x$$

Parity projected
QCD sum rule
Gaussian sum rule: $G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$
Non-perturbative effects
In-medium effects

Condensates:

• Non-perturbative contributions are expressed by condensates.

• In-medium effects can be expressed by the in-medium modifications of the condensates.

```
    What kind of condensates does the Λ<sub>c</sub> correlation function contains?
    Are there contributions from chiral condensate?
    How do the in-medium effects appear?
    Are the in-medium effects related to only light quarks?
```

Is the heavy quark treated as spectator?

OPE of Λ_c correlation function

OPE of Λ_c correlation function Gaussian sum rule: $G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$ Diagrams of Λ_c OPE: $G_{OPE}(\tau)$ = +++ 660000 \overline{qq} Perturbative (LO) NLO Ling -++ + $\frac{\alpha_s}{-}G^2$ $\langle \overline{q}g\sigma \cdot Gq \rangle$

The contributions from chiral condensates are strongly suppressed.

OPE of Λ_c correlation function

 \longrightarrow Diagrams of Λ_c OPE:

Gaussian sum rule: $\underline{G_{OPE}(\tau)} = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$

 $\Lambda_{\rm c} \text{ interpolating operator: } J_{\Lambda_c} = \epsilon^{abc} (u^{Ta} C \gamma_5 d^b) c^c = \epsilon^{abc} (-u_L^T C \gamma_5 d_L + u_R^T C \gamma_5 d_R) c^c$

The property of J_{Λ_Q} . The right handed spinor of u quark is paired with left handed one. $\langle \overline{u}u \rangle$ The right handed spinor of d quark is also paired with left handed one. m_d

The contributions appear as $\mathfrak{m}_{\mathsf{q}}\langle\overline{q}q
angle$ and are numerically small.

OPE of Λ_c correlation function

Gaussian sum rule: $\underline{G_{OPE}(\tau)} = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$

 $\Lambda_{\rm c} \text{ interpolating operator: } J_{\Lambda_Q} = \epsilon^{abc} (u^{Ta} C \gamma_5 d^b) Q^c = \epsilon^{abc} (-u_L^T C \gamma_5 d_L + u_R^T C \gamma_5 d_R) Q^c$

More explicitly, the contributions of $\langle \overline{q}q \rangle$ are expressed as the following form.

$$\propto \operatorname{Tr}[(\not q + m_q)\langle \overline{q}q \rangle] \propto m_q \langle \overline{q}q \rangle$$

The contributions appear as $m_q\langle \overline{q}q \rangle$ and are numerically small.

OPE of Λ_c correlation function Gaussian sum rule: $G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$ \longrightarrow Diagrams of Λ_c OPE: $G_{OPE}(\tau) = \otimes$ + +66607 qqPerturbative (LO) NLO The effect from the partial restoration of the chiral symmetry $\langle \overline{q}q angle$ Chiral condensate $\overline{q}q\rangle$ $\langle \overline{q}q\overline{q}q \rangle$ Chiral condensate $(\overline{q}q\overline{q}q)$ 4 quark condensate 4 quark condensate Nucleon

 $\Lambda_{\rm c}$ baryon knows the partial restoration of the chiral symmetry breaking through four quark condensates.

OPE of Λ_c correlation function Gaussian sum rule: $G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$ Diagrams of Λ_c OPE: $G_{OPE}(\tau)$ = +++ 660000 \overline{qq} Perturbative (LO) NLO Kins -++ + $\frac{\alpha_s}{G^2}$ $\langle \overline{q}g\sigma \cdot Gq \rangle$

Furthermore, contributions from some kinds of condensates are also suppressed.

This result indicates that

Results

$$G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$$
$$\rho(q_0) = |\lambda|^2 \delta(q_0 - m_{\Lambda_c}) + \operatorname{Continuum}(\propto \theta(q_0 - q_{th}))$$

The density dependence of M_{Λ_c}

Summary

•We construct the parity projected Λ_c QCD sum rule.

- •From Λ_c sum rule, it is found that the Λ_c knows the partial restoration of chiral symmetry through four quark condensate and mass shift of Λ_c come from the good diquark.
- •We analyze the Λ_c spectral function in vacuum and nuclear matter.
- We investigate the density dependence of the mass of Λ_c .
- As the density increases, the mass of Λ_c increases.

Future plan

•We will compare the case of Λ baryon.

$$G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$$

Density dependence of the $G_{OPE}(au)$

$$G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$$

Density dependence of the $G_{OPE}(\tau)$

$$G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$$

Density dependence of the $G_{OPE}(\tau)$

$$\Pi_{old}(q) = i \int \theta(x_0) \langle T\{j(x)\overline{j}(0)\} \rangle e^{iqx} dx = m \Pi_{old}^m(q_0, |\vec{q}|) + \not q \Pi_{old}^q(q_0, |\vec{q}|) + \not q \Pi_{old}^u(q_0, |\vec{q}|).$$

$$\rho_{old}^i(q_0, |\vec{q}|) \equiv \frac{1}{\pi} Im[\Pi_{old}^i(q^2)] \quad (i = m, q, u)$$

$$\rho_{old OPE}^{+} = q_0 \rho_{old}^q + m_Q \rho_{old}^m + u_0 \rho_{old}^u$$

$$\int_{-\infty}^{\infty} \rho_{old \ OPE}^{+}(q_0) W(q_0) dq_0 = \int_{0}^{\infty} \rho_{hadron}^{+}(q_0) W(q_0) dq_0$$

$$W(q_0) = \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right)$$

Negative parity $G_{OPE}(\tau)$

$$\rho_{old \ OPE}^{+} = q_0 \rho_{old}^q + m_Q \rho_{old}^m + u_0 \rho_{old}^u$$
$$\rho_{old \ OPE}^{-} = q_0 \rho_{old}^q - m_Q \rho_{old}^m + u_0 \rho_{old}^u$$
$$G_{OPE}(\tau) = \int_{-\infty}^{\infty} \rho_{old \ OPE}(q_0) W(q_0) dq_0$$

$$\chi^{2} = \frac{1}{n_{set} \times n_{\tau}} \sum_{j=1}^{n_{set}} \sum_{i=1}^{n_{\tau}} \frac{(G_{OPE}^{j}(\tau_{i}) - G_{SPF}^{j}(\tau_{i}))^{2}}{\sigma^{j}(\tau_{i})^{2}}$$
$$\sigma^{j}(\tau_{i})^{2} = \frac{1}{n_{set} - 1} \sum_{j=1}^{n_{set}} (G_{OPE}^{j}(\tau_{i}) - \overline{G_{OPE}}(\tau_{i}))^{2}$$
$$G_{SPF}(\tau) = \int_{0}^{\infty} \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_{0}^{2} - m_{Q}^{2})^{2}}{4\tau}\right) \rho(q_{0}) dq_{0}$$

 n_{set} : The number of the condensate sets which are randomly generated with errors

 $n_{ au}$: The number of the point au in the analyzed au region

Error bar: $|\chi^2 - 1| < 0.1$