Mesonic and nucleon fluctuation effects at finite baryon density

Gergely Fejős

Research Center for Nuclear Physics Osaka University

Workshop on "Strangeness and charm in hadrons and dense matter" Yukawa Institute for Theoretical Physics, Kyoto University

22 May, 2017

GF & A. Hosaka, Phys. Rev. D **94**, 036005 (2016) GF & A. Hosaka, arXiv:1701.03717

Motivation

Functional Renormalization Group

Chiral effective nucleon-meson theory at finite μ_{B}

Numerical results

Summary

イロト イヨト イヨト

Э

- 2nd order transitions in statistical field theory
 - \longrightarrow diverging correlation length invalidates PT
 - \longrightarrow solution: Wilson's momentum space RG
 - \longrightarrow explanation of universality, critical exponents, etc.

- 4 回 ト - 4 回 ト

- 2nd order transitions in statistical field theory
 - \longrightarrow diverging correlation length invalidates PT
 - \longrightarrow solution: Wilson's momentum space RG
 - \longrightarrow explanation of universality, critical exponents, etc.
- Large logarithms in continuum quantum field theory
 - \longrightarrow PT is organized in terms of $\sim \lambda \cdot \log(E/M^2)$
 - \longrightarrow PT can fail even for small couplings \Rightarrow resummation!
 - \longrightarrow solution: Gell-Mann Low RG

< □ > < □ > < □ >

- 2nd order transitions in statistical field theory
 - \longrightarrow diverging correlation length invalidates PT
 - \longrightarrow solution: Wilson's momentum space RG
 - \longrightarrow explanation of universality, critical exponents, etc.
- Large logarithms in continuum quantum field theory
 - \longrightarrow PT is organized in terms of $\sim \lambda \cdot \log(E/M^2)$
 - \longrightarrow PT can fail even for small couplings \Rightarrow resummation!
 - \longrightarrow solution: Gell-Mann Low RG
- Problem in QCD: running coupling grows as E decreases
 - \longrightarrow RG cannot provide a generic solution
 - \longrightarrow effective models can help, but are also strongly coupled

(ロ) (同) (E) (E) (E)

- 2nd order transitions in statistical field theory
 - \longrightarrow diverging correlation length invalidates PT
 - \longrightarrow solution: Wilson's momentum space RG
 - \longrightarrow explanation of universality, critical exponents, etc.
- Large logarithms in continuum quantum field theory
 - \longrightarrow PT is organized in terms of $\sim \lambda \cdot \log(E/M^2)$
 - \longrightarrow PT can fail even for small couplings \Rightarrow resummation!
 - \longrightarrow solution: Gell-Mann Low RG
- Problem in QCD: running coupling grows as E decreases
 - \longrightarrow RG cannot provide a generic solution
 - \longrightarrow effective models can help, but are also strongly coupled

If one is interested in the finite T and density behavior of the strongly interacting matter, fluctuation effects are important.

(ロ) (同) (E) (E) (E)

AXIAL ANOMALY OF QCD:

- $U_A(1)$ anomaly: anomalous breaking of the $U_A(1)$ subgroup of chiral symmetry
 - \rightarrow vacuum-to-vacuum topological fluctuations (instantons)

$$\partial_{\mu} j^{\mu a}_{A} = -\frac{g^2}{16\pi^2} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left[T^a F_{\mu\nu} F_{\rho\sigma} \right]$$

- Induced $U_A(1)$ breaking interactions depend on instanton density
 - \longrightarrow suppressed at high T
 - \longrightarrow calculations are trustworthy only beyond T_C
 - \rightarrow is the anomaly present around and below T_C ?
- Recent lattice QCD simulations do not seem to have agreement on the issue^{1,2}

¹S. Sharma et al., Nucl. Phys. A **956**, 793 (2016)

²A. Tomiya et al., arXiv:1612.01908

η^\prime - NUCLEON BOUND STATE:

• Effective models at finite T and/or density:

- \rightarrow effective models (NJL³, linear sigma models⁴) predict a drop in $m_{\eta'}$ at finite T and μ_B
- Effective description of the mass drop:
 - \longrightarrow attractive potential in medium $\Rightarrow \eta' N$ bound state
 - \rightarrow Analogous to $\Lambda(1405) \sim \bar{K}N$ bound state

³P. Costa, M. C. Ruivo & Yu. L. Kalinovsky, Phys. Lett. B 560, 171 (2003).

⁴S. Sakai & D. Jido, Phys. Rev. C**88**, 064906 (2013)・ (ヨト くまト くまト き つへで

η^\prime - NUCLEON BOUND STATE:

• Effective models at finite T and/or density:

- \longrightarrow effective models (NJL³, linear sigma models⁴) predict a drop in $m_{\eta'}$ at finite T and μ_B
- Effective description of the mass drop:
 - \longrightarrow attractive potential in medium $\Rightarrow \eta' \textit{N}$ bound state
 - \rightarrow Analogous to $\Lambda(1405) \sim \bar{K}N$ bound state
- Problem with effective model calculations: they treat model parameters as environment independent constants

 \rightarrow "*a* · *v*" type of terms decrease (*a*-constant, *v*-decreases)

 \longrightarrow evolution of *a* at finite *T* and μ_B ?

³P. Costa, M. C. Ruivo & Yu. L. Kalinovsky, Phys. Lett. B 560, 171 (2003).

⁴S. Sakai & D. Jido, Phys. Rev. C**88**, 064906 (2013)・ (ヨト くまト くまト き つへで

Motivation

CHIRAL EFFECTIVE NUCLEON-MESON MODEL:

- Chiral symmetry of QCD: $U(N_f) \times U(N_f)$ $(\Psi_{L/R} \rightarrow U_{L/R} \Psi_{L/R})$
- Effective model of mesons (*M*) and the nucleon (*N*): [*M*: π, K, η, η' and $a_0, \kappa, f_0, \sigma, N$: n, p]

$$\mathcal{L} = \operatorname{Tr} \left[\partial_{\mu} M \partial^{\mu} M^{\dagger} \right] - \mu^{2} \operatorname{Tr} \left(M M^{\dagger} \right) - \frac{g_{1}}{9} \left[\operatorname{Tr} \left(M M^{\dagger} \right) \right]^{2} - \frac{g_{2}}{3} \operatorname{Tr} \left(M M^{\dagger} \right)^{2} - \operatorname{Tr} \left[H (M + M^{\dagger}) \right] - a (\det M + \det M^{\dagger}) + \overline{N} (-\partial_{i} \gamma_{i} + \mu_{B} \gamma_{0} - m_{N}) N - g \overline{N} \tilde{M}_{5} N$$

- 4 同下 4 日下 4 日下 - 日

Motivation

CHIRAL EFFECTIVE NUCLEON-MESON MODEL:

- Chiral symmetry of QCD: $U(N_f) \times U(N_f)$ $(\Psi_{L/R} \rightarrow U_{L/R} \Psi_{L/R})$
- Effective model of mesons (*M*) and the nucleon (*N*): [*M*: π, K, η, η' and $a_0, \kappa, f_0, \sigma, N$: n, p]

$$\mathcal{L} = \operatorname{Tr} \left[\partial_{\mu} M \partial^{\mu} M^{\dagger} \right] - \mu^{2} \operatorname{Tr} \left(M M^{\dagger} \right) - \frac{g_{1}}{9} \left[\operatorname{Tr} \left(M M^{\dagger} \right) \right]^{2} - \frac{g_{2}}{3} \operatorname{Tr} \left(M M^{\dagger} \right)^{2} - \operatorname{Tr} \left[H (M + M^{\dagger}) \right] - a (\det M + \det M^{\dagger}) + \bar{N} (-\partial_{i} \gamma_{i} + \mu_{B} \gamma_{0} - m_{N}) N - g \bar{N} \tilde{M}_{5} N$$

- Model parameters:
 - \rightarrow meson mass parameter (μ^2), quartic couplings (g_1, g_2),
 - \longrightarrow explicit breaking ($H = h_0 T^0 + h_8 T^8$), $U_A(1)$ anomaly (a),
 - \longrightarrow nucleon mass parameter (m_N) , Yukawa coupling (g)
- Short-range N N interactions: ω and ρ mesons

(日本)(日本)(日本)(日本)

• Fluctuation effects are included in the partition function and/or in the quantum effective action

$$Z[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)} \quad \Rightarrow \quad \Gamma[\bar{\phi}] = -\log Z[J] - \int J\bar{\phi}$$

・日・ ・ヨ・ ・ヨ・

• Fluctuation effects are included in the partition function and/or in the quantum effective action

$$Z[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)} \quad \Rightarrow \quad \Gamma[\bar{\phi}] = -\log Z[J] - \int J\bar{\phi}$$

- Functional RG approach: generalized Wilsonian RG
- Similarities:
 - \longrightarrow provides a way to handle IR singularities
 - \longrightarrow gradually integrates out high momentum modes
- Differences:
 - \longrightarrow flow of the complete effective action is considered
 - \longrightarrow IR regulator is not fixed \Rightarrow optimization!

・ 同 ト ・ ヨ ト ・ ヨ ト

• Fluctuation effects are included in the partition function and/or in the quantum effective action

$$Z[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)} \quad \Rightarrow \quad \Gamma[\bar{\phi}] = -\log Z[J] - \int J\bar{\phi}$$

- Functional RG approach: generalized Wilsonian RG
- Similarities:
 - \longrightarrow provides a way to handle IR singularities
 - \longrightarrow gradually integrates out high momentum modes
- Differences:
 - \longrightarrow flow of the complete effective action is considered
 - \longrightarrow IR regulator is not fixed \Rightarrow optimization!
- Functional Renormalization Group provides a non-perturbative approach to resummation of fluctuation effects.

Mathematical implementation:

• Scale dependent partition function:

$$Z_k[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)} \times e^{-\frac{1}{2}\int \phi R_k \phi}$$

• Scale dependent effective action:

$$\Gamma_{k}[\bar{\phi}] = -\log Z_{k}[J] - \int J\bar{\phi} - \frac{1}{2} \int \bar{\phi} R_{k}\bar{\phi}$$
$$\longrightarrow k \approx \Lambda: \text{ no fluctuations included}$$

$$\Rightarrow \Gamma_k[\bar{\phi}]|_{\boldsymbol{k}=\boldsymbol{\Lambda}} = \mathcal{S}[\bar{\phi}]$$

$$\longrightarrow k = 0: \text{ all fluctuations included} \Rightarrow \Gamma_k[\bar{\phi}]|_{k=0} = \Gamma[\bar{\phi}]$$

• Flow equation of the effective action:

$$\partial_k \Gamma_k = \frac{1}{2} \int_{q,p}^{(T)} \partial_k \mathbf{R}_k(q,p) (\Gamma_k^{(2)} + \mathbf{R}_k)^{-1}(p,q) = \frac{1}{2}$$

- One-loop structure with dressed and regularized propagators
 - → RG change in the *n*-point vertices are described solely by one-loop diagrams
 - \longrightarrow exact relation, approximations are necessary

• Flow equation of the effective action:

$$\partial_k \Gamma_k = \frac{1}{2} \int_{q,p}^{(T)} \partial_k \mathbf{R}_k(q,p) (\Gamma_k^{(2)} + \mathbf{R}_k)^{-1}(p,q) = \frac{1}{2}$$

- One-loop structure with dressed and regularized propagators
 - → RG change in the *n*-point vertices are described solely by one-loop diagrams
 - \longrightarrow exact relation, approximations are necessary
- Derivative expansion (local potential approximation):

$$\begin{split} \Gamma_{k} &= \int_{x} \left[\operatorname{Tr} \left[\partial_{\mu} M \partial^{\mu} M^{\dagger} \right] + \bar{N} (-\partial_{i} \gamma_{i} + \mu_{B} \gamma_{0} - m_{N}) N - V_{k} \right] \\ V_{k} &= \mu_{k}^{2} [M] \operatorname{Tr} (M M^{\dagger}) + \frac{g_{1,k} [M]}{9} [\operatorname{Tr} (M M^{\dagger})]^{2} + \frac{g_{2,k} [M]}{3} \operatorname{Tr} (M M^{\dagger})^{2} \\ &+ \operatorname{Tr} \left[H_{k} (M + M^{\dagger}) \right] + A_{k} [M] (\det M + \det M^{\dagger}) + g_{k} [M] \bar{N} \tilde{M}_{5} N \end{split}$$

• Flow equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_{q,p}^{(T)} \partial_k \mathbf{R}_k(q,p) (\Gamma_k^{(2)} + \mathbf{R}_k)^{-1}(p,q)$$

 \longrightarrow projection to various operators: individual flow equations for field dependent couplings

伺下 イヨト イヨト

• Flow equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_{q,p}^{(T)} \partial_k \mathbf{R}_k(q,p) (\Gamma_k^{(2)} + \mathbf{R}_k)^{-1}(p,q)$$

 \longrightarrow projection to various operators: individual flow equations for field dependent couplings

• Step I.: solve equations at $T = 0 \Rightarrow$ determine parameters $\rightarrow \mu, g_1, g_2, a$: determined by fitting masses of π, K, η, η' $\rightarrow g$: determined by fitting nucleon mass with m_N minimal \rightarrow PCAC relations: $(\alpha = \pi, K)$ $m_{\alpha}^2 f_{\alpha} \hat{\pi}_{\alpha} = \partial_{\mu} J_{\alpha}^{5\mu} = -\frac{\partial}{\partial \theta_A^{\alpha}} \operatorname{Tr} (H(M + M^{\dagger}))$ $h_0 \approx (286 MeV)^3 \quad h_8 \approx -(311 MeV)^3$

マロト マヨト マヨト 二日

• Flow equation:

$$\partial_k \Gamma_k = \frac{1}{2} \int_{q,p}^{(T)} \partial_k \mathbf{R}_k(q,p) (\Gamma_k^{(2)} + \mathbf{R}_k)^{-1}(p,q)$$

 \longrightarrow projection to various operators: individual flow equations for field dependent couplings

- Step I.: solve equations at $T = 0 \Rightarrow$ determine parameters $\rightarrow \mu, g_1, g_2, a$: determined by fitting masses of π, K, η, η' $\rightarrow g$: determined by fitting nucleon mass with m_N minimal \rightarrow PCAC relations: $(\alpha = \pi, K)$ $m_{\alpha}^2 f_{\alpha} \hat{\pi}_{\alpha} = \partial_{\mu} J_{\alpha}^{5\mu} = -\frac{\partial}{\partial \theta_A^{\alpha}} \operatorname{Tr} (H(M + M^{\dagger}))$ $h_0 \approx (286 MeV)^3 \quad h_8 \approx -(311 MeV)^3$
- Step II.: solve the same equations at finite T and $\mu_B \rightarrow$ spectrum, symmetry restoration, $U_A(1)$ anomaly

向下 イヨト イヨト

Numerical results: mass spectrum at finite T

masses [MeV]

Gergely Fejős

Numerical results: $\eta - \eta'$ system at finite T

Numerical results: anomaly at finite T

Gergely Fejős

Numerical results: anomaly at finite T

Gergely Fejős

Numerical results: anomaly at finite μ_B

Numerical results: heavy spectrum at finite μ_B

T = 0 MeV

Numerical results: heavy spectrum at finite μ_B

T = 100 MeV

- Mesonic and nucleon fluctuations seems to have a strong effect on the anomaly evolution
 - \longrightarrow they cause a relative change of about $\sim 20\%$

at
$$T \simeq T_C$$
 and at $\mu_B \simeq \Lambda \ (\sim 1 \, {\rm GeV} \,)$

・ 回 ト ・ ヨ ト ・ ヨ ト

- Mesonic and nucleon fluctuations seems to have a strong effect on the anomaly evolution
 - \rightarrow they cause a relative change of about $\sim 20\%$ at $T \simeq T_C$ and at $\mu_B \simeq \Lambda$ (~ 1 GeV)
- Caution 1.)
 - \rightarrow due to large anomaly the nucleon mass piece arises from chiral symmetry breaking has an upper limit
 - \Rightarrow nucleon mass parameter m_N becomes large and violates chiral symmetry

・ 同 ト ・ ヨ ト ・ ヨ ト

- Mesonic and nucleon fluctuations seems to have a strong effect on the anomaly evolution
 - \rightarrow they cause a relative change of about $\sim 20\%$

at
$$I \simeq I_C$$
 and at $\mu_B \simeq \Lambda (\sim 1 \, \text{GeV})$

- Caution 1.)
 - \rightarrow due to large anomaly the nucleon mass piece arises from chiral symmetry breaking has an upper limit \Rightarrow nucleon mass parameter m_N becomes large and

violates chiral symmetry

- Caution 2.)
 - \longrightarrow large anomaly ruins the value of ${\it T_C}$ at $\mu_B=0$
 - \longrightarrow it is off by almost a factor of 2!

・ 同 ト ・ ヨ ト ・ ヨ ト

• Mesonic and nucleon fluctuations seems to have a strong effect on the anomaly evolution

 \longrightarrow they cause a relative change of about $\sim 20\%$

at $T \simeq T_C$ and at $\mu_B \simeq \Lambda \ (\sim 1 \, {\rm GeV} \)$

- Caution 1.)
 - \rightarrow due to large anomaly the nucleon mass piece arises from chiral symmetry breaking has an upper limit \Rightarrow nucleon mass parameter m_N becomes large and

violates chiral symmetry

- Caution 2.)
 - \longrightarrow large anomaly ruins the value of ${\it T_C}$ at $\mu_B=0$
 - \longrightarrow it is off by almost a factor of 2!

Way out: the bare anomaly parameter *a* has to depend explicitly on T and μ_B . It should represent the underlying instanton dynamics of QCD.

- Finite *T* and density properties of the axial anomaly and mesonic spectra in a chiral effective nucleon-meson model
- Fluctuations (quantum and thermal) via the Functional Renormalization Group (FRG) approach → thermal evolution of the mass spectrum and condensates
 - \longrightarrow temperature dependence of the $U_{A}(1)$ anomaly factor
- Findings:
 - \longrightarrow meson fluctuations strengthen the anomaly with respect to the temperature \Rightarrow no recovery at T_C
 - \longrightarrow putting the system into nuclear medium also affects the anomaly \Rightarrow it increases as μ_B grows

 $\longrightarrow \eta'$ mass is increasing with μ_B and T

• Important: T_C of chiral restoration and m_N comes out high! \Rightarrow T-dependence of the bare anomaly coeff. can be relevant!