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Motivation

FLUCTUATION EFFECTS IN FIELD THEORY:

2nd order transitions in statistical field theory
−→ diverging correlation length invalidates PT
−→ solution: Wilson’s momentum space RG
−→ explanation of universality, critical exponents, etc.

Large logarithms in continuum quantum field theory
−→ PT is organized in terms of ∼ λ · log(E/M2)
−→ PT can fail even for small couplings ⇒ resummation!
−→ solution: Gell-Mann - Low RG

Problem in QCD: running coupling grows as E decreases
−→ RG cannot provide a generic solution
−→ effective models can help, but are also strongly coupled
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−→ diverging correlation length invalidates PT
−→ solution: Wilson’s momentum space RG
−→ explanation of universality, critical exponents, etc.

Large logarithms in continuum quantum field theory
−→ PT is organized in terms of ∼ λ · log(E/M2)
−→ PT can fail even for small couplings ⇒ resummation!
−→ solution: Gell-Mann - Low RG

Problem in QCD: running coupling grows as E decreases
−→ RG cannot provide a generic solution
−→ effective models can help, but are also strongly coupled

If one is interested in the finite T and density behavior of the
aa strongly interacting matter, fluctuation effects are important.
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Motivation

AXIAL ANOMALY OF QCD:

UA(1) anomaly: anomalous breaking of the UA(1) subgroup
of chiral symmetry
−→ vacuum-to-vacuum topological fluctuations (instantons)

∂µj
µa
A = − g2

16π2
εµνρσ Tr [T aFµνFρσ]

Induced UA(1) breaking interactions depend on instanton
density

−→ suppressed at high T
−→ calculations are trustworthy only beyond TC

−→ is the anomaly present around and below TC?

Recent lattice QCD simulations do not seem to have
agreement on the issue1,2

1S. Sharma et al., Nucl. Phys. A 956, 793 (2016)
2A. Tomiya et al., arXiv:1612.01908
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Motivation

η′ - NUCLEON BOUND STATE:

Effective models at finite T and/or density:
−→ effective models (NJL3, linear sigma models4) predict a
aaaadrop in mη′ at finite T and µB

Effective description of the mass drop:
−→ attractive potential in medium ⇒ η′N bound state
−→ Analogous to Λ(1405) ∼ K̄N bound state

Problem with effective model calculations: they treat model
parameters as environment independent constants
−→

”
a · v” type of terms decrease (a-constant, v -decreases)

−→ evolution of a at finite T and µB?

3P. Costa, M. C. Ruivo & Yu. L. Kalinovsky, Phys. Lett. B 560, 171 (2003).
4S. Sakai & D. Jido, Phys. Rev. C88, 064906 (2013).
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Motivation

CHIRAL EFFECTIVE NUCLEON-MESON MODEL:

Chiral symmetry of QCD: U(Nf )× U(Nf ) (ΨL/R → UL/RΨL/R)

Effective model of mesons (M) and the nucleon (N):
[M: π,K , η, η′ and a0, κ, f0, σ, N: n, p]

L = Tr [∂µM∂µM†]− µ2 Tr (MM†)− g1

9
[Tr (MM†)]2

− g2

3
Tr (MM†)2 − Tr [H(M + M†)]− a(detM + detM†)

+ N̄(−∂iγi + µBγ0 −mN)N − gN̄M̃5N

Model parameters:

−→ meson mass parameter (µ2), quartic couplings (g1, g2),

−→ explicit breaking (H = h0T
0 + h8T

8), UA(1) anomaly (a),

−→ nucleon mass parameter (mN), Yukawa coupling (g)

Short-range N − N interactions: ω and ρ mesons
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Functional Renormalization Group

Fluctuation effects are included in the partition function
and/or in the quantum effective action

Z [J] =

∫
Dφe−(S[φ]+

∫
Jφ) ⇒ Γ[φ̄] = − logZ [J]−

∫
Jφ̄

Functional RG approach: generalized Wilsonian RG

Similarities:
−→ provides a way to handle IR singularities
−→ gradually integrates out high momentum modes

Differences:
−→ flow of the complete effective action is considered
−→ IR regulator is not fixed ⇒ optimization!

Functional Renormalization Group provides a non-perturbative
approach to resummation of fluctuation effects.
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Functional Renormalization Group

Mathematical implementation:

Scale dependent partition function:

aa Zk [J] =
∫
Dφe−(S[φ]+

∫
Jφ)

aaaaaaaa×e−
1
2

∫
φRkφ

Scale dependent effective action:  

 

 

 

 

 

    

k2

k q
0

0

R
k(

q)

Γk [φ̄] = − logZk [J]−
∫
Jφ̄− 1

2

∫
φ̄Rk φ̄

−→ k ≈ Λ: no fluctuations included

aaaa⇒ Γk [φ̄]|k=Λ = S[φ̄]

−→ k = 0: all fluctuations included

aaaa⇒ Γk [φ̄]|k=0 = Γ[φ̄]
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Chiral effective nucleon-meson model

Flow equation of the effective action:

∂kΓk =
1

2

∫ (T )

q,p
∂kRk(q, p)(Γ

(2)
k + Rk)−1(p, q) =

1

2

One-loop structure with dressed and regularized propagators

−→ RG change in the n-point vertices are
aaaadescribed solely by one-loop diagrams
−→ exact relation, approximations are necessary

Derivative expansion (local potential approximation):

Γk =

∫
x

[
Tr [∂µM∂µM†] + N̄(−∂iγi + µBγ0 −mN)N − Vk

]
Vk = µ2

k [M]Tr (MM†) +
g1,k [M]

9
[Tr (MM†)]2 +

g2,k [M]

3
Tr (MM†)2

+ Tr [Hk(M + M†)] + Ak [M](detM + detM†) + gk [M]N̄M̃5N
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Chiral effective nucleon-meson model

Flow equation:

∂kΓk =
1

2

∫ (T )

q,p
∂kRk(q, p)(Γ

(2)
k + Rk)−1(p, q)

−→ projection to various operators: individual flow equations
aaaafor field dependent couplings

Step I.: solve equations at T = 0 ⇒ determine parameters
−→ µ, g1, g2, a: determined by fitting masses of π,K , η, η′

−→ g : determined by fitting nucleon mass with mN minimal
−→ PCAC relations: (α = π,K )

m2
αfαπ̂α = ∂µJ

5µ
α = − ∂

∂θαA
Tr (H(M + M†))

h0 ≈ (286MeV )3 h8 ≈ −(311MeV )3

Step II.: solve the same equations at finite T and µB
−→ spectrum, symmetry restoration, UA(1) anomaly
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Numerical results: mass spectrum at finite T
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Numerical results: η − η′ system at finite T
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Numerical results: anomaly at finite T
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Numerical results: anomaly at finite µB

 0

 200

 400

 600

 800

 1000

 1200

 1400

 600  800  1000  1200

∆|
A

|(
µ B

;T
) 

[M
eV

]

µB [MeV]

T=0 MeV
T=30 MeV
T=50 MeV

T=100 MeV
T=200 MeV
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Numerical results: heavy spectrum at finite µB
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Numerical results: heavy spectrum at finite µB
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Numerical results

Mesonic and nucleon fluctuations seems to have a strong
effect on the anomaly evolution

−→ they cause a relative change of about ∼ 20%
aaaaat T ' TC and at µB ' Λ (∼ 1GeV )

Caution 1.)
−→ due to large anomaly the nucleon mass piece arises from
aaaachiral symmetry breaking has an upper limit
aaaa⇒ nucleon mass parameter mN becomes large and
aaaaaa violates chiral symmetry

Caution 2.)
−→ large anomaly ruins the value of TC at µB = 0
−→ it is off by almost a factor of 2!
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Numerical results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

strange

non strange

v s
/n
s(
T)
/v
s/
ns
(0
)

T [MeV]

dashed: without anomaly, solid: with anomaly
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Numerical results

Mesonic and nucleon fluctuations seems to have a strong
effect on the anomaly evolution

−→ they cause a relative change of about ∼ 20%
aaaaat T ' TC and at µB ' Λ (∼ 1GeV )

Caution 1.)
−→ due to large anomaly the nucleon mass piece arises from
aaaachiral symmetry breaking has an upper limit
aaaa⇒ nucleon mass parameter mN becomes large and
aaaaaa violates chiral symmetry

Caution 2.)
−→ large anomaly ruins the value of TC at µB = 0
−→ it is off by almost a factor of 2!

Way out: the bare anomaly parameter a has to depend explicitly
on T and µB . It should represent the underlying instanton
dynamics of QCD.
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Summary

Finite T and density properties of the axial anomaly and
mesonic spectra in a chiral effective nucleon-meson model

Fluctuations (quantum and thermal) via the
Functional Renormalization Group (FRG) approach
−→ thermal evolution of the mass spectrum and condensates
−→ temperature dependence of the UA(1) anomaly factor

Findings:

−→ meson fluctuations strengthen the anomaly with respect
aaaato the temperature ⇒ no recovery at TC

−→ putting the system into nuclear medium also
aaaaaffects the anomaly ⇒ it increases as µB grows

−→ η′ mass is increasing with µB and T

Important: TC of chiral restoration and mN comes out high!
⇒ T -dependence of the bare anomaly coeff. can be relevant!
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