Few-body calculations for kaonic nuclear and atomic systems

YITP molecule workshop "Strangeness and charm in hadrons and dense matter" Yukawa Institute for Theoretical Physics, Kyoto Univ., Japan 2017.5.15-26

Wataru Horiuchi (Hokkaido Univ.)

Collaborators:

S. Ohnishi, T. Hoshino (Hokkaido → company)
K. Miyahara, T. Hyodo (Kyoto)
W. Weise (TUM, Kyoto)

Outline

- Precise few-body calculations for kaonic systems
 - Modern $\overline{K}NN$ interaction K. Miyahara, T. Hyodo, PRC93 (2016)
 - Kaonic nuclei: $\overline{K}NN$ to $\overline{K}NNNNN$ (7-body)

S. Ohnishi, WH, T. Hoshino, K. Miyahara, T. Hyodo, arXiv:1701.07589 accepted for publication in Phys. Rev. C, in press.

• Kaonic deuterium: $\overline{K}NN$ three-body system

T. Hoshino, S. Ohnishi, WH, T. Hyodo, W. Weise, arXiv:1705.06857, submitted to Phys. Rev. C (5/19).

- Unified approach to atomic and nuclear kaonic systems

- Nucleus \sim few fm
- Atom ∼several hundreds fm

Kaonic nuclei (Nucleus with antikaon)

• Λ(1405); J^π=1/2⁻, S= -1

- uds constituent quark model
 - Energy is too high
- $-\overline{K}N \text{ quasi-bound state} \xrightarrow{\text{Isgur, Karl, PRD 18, 4187(1978)}}_{\text{PR 153, 1617 (1967)}}$ $\rightarrow \text{ strongly attractive } \overline{K}N \text{ interaction}$

Can such a high density system be produced in laboratory? Does Kaonic nucleus really exist? E15 exp. $\rightarrow \overline{K}N$ interaction is essential!

Kaonic nuclear systems (3 to 7-body)

- Hamiltonian $H = \sum_{i=1}^{\mathcal{N}} T_i T_{cm} + \sum_{i< j}^{\mathcal{N}-1} V_{ij}^{(NN)} + \sum_{i=1}^{\mathcal{N}-1} V_{i\mathcal{N}}^{(\bar{K}N)} + \sum_{i< j}^{\mathcal{N}} V_{ij}^{Coul.}$
- Correlated Gaussian basis $\Phi_{SM_SM_T}(x,A) = \mathscr{A}\{\exp(-\widetilde{x}Ax)\chi_{SM_S}\eta_{M_T}\},\$

- Many parameters \sim (N-1)(N-2)/2 × (# of basis)

 \rightarrow Stochastic variational method K. Varga and Y. Suzuki, PRC52, 2885 (1995).

• Choice of NN potential (AV4', ATS3, MN)

All NN interaction models reproduce the binding energy of s-shell nuclei

Choice of \overline{KN} interaction

Kyoto KN potential K.Miyahara, T.Hyodo, PRC 93, 015201 (2016)

- > Energy-dependent $\overline{K}N$ single-channel potential
- Chiral SU(3) dynamics at NLO
- Pole energy: 1424 26i and 1381 81i MeV Y.Ikeda, T.Hyodo, W.Weise, NPA881 (2012) 98

 $\overline{K}N$ two-body energy in an N-body system are determined as:

 $\sqrt{s} = m_N + m_{\bar{K}} + \delta\sqrt{s} \quad , \quad -B_K \equiv \langle \Psi | H | \Psi \rangle - \langle \Psi | H_N | \Psi \rangle \quad ,$ Type I: $\delta\sqrt{s} = -B_K \quad , \qquad$ Type II: $\delta\sqrt{s} = -B_K/(N-1) \quad ,$ for *N*-body

 $-B_K/3K$

"Field picture"

 $B_K/3$ $B_K/3$ "Particle picture" A. Dote, T. Hyodo, W. Weise, NPA804, 197 (2008).

Akaishi-Yamazaki (AY) potential Akaishi, Yamazaki, PRC65, 04400(2002).

- Energy-independent
- > Reproduce $\Lambda(1405)$ as \overline{KN} quasi-bound state

Variational calculation for many-body quantum system

- Many-body wave function Ψ has all information of the system
- Solve many-body Schoedinger equation
 ⇔ Eigenvalue problem with Hamiltonian matrix
 HΨ = EΨ
- Variational principle $\langle \Psi | H | \Psi \rangle = E \ge E_0$ ("Exact" energy) (Equal holds if Ψ is the "exact" solution)

Many degrees of freedom

→ Expand Ψ with several sets of basis functions Correlated Gaussian + Global vectors

Explicitly correlated basis approach

Correlated Gaussian with two global vectors

Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

 $\phi_{(L_1L_2)LM_L}^{\pi}(A, u_1, u_2) = \exp(-\tilde{x}Ax) [\mathcal{Y}_{L_1}(\tilde{u}_1x)\mathcal{Y}_{L_2}(\tilde{u}_2x)]_{LM_L}$ $\mathcal{Y}_{\ell}(\boldsymbol{r}) = r^{\ell} Y_{\ell}(\hat{\boldsymbol{r}})$

x: any relative coordinates (cf. Jacobi)

 $\tilde{x}Ax = \sum_{i,j=1}^{N-1} A_{ij}x_i \cdot x_j$ $\tilde{u}_i x = \sum_{k=1}^{N-1} (u_i)_k x_k$

Formulation for N-particle system Analytical expression for matrix elements

Functional form does not change under any coordinate transformation

$$y = Tx \implies \widetilde{y}By = \widetilde{x}\widetilde{T}BTx \qquad \widetilde{v}y = \widetilde{T}vx$$

Shell and cluster structure

Rearrangement channels

See Review: J. Mitroy et al., Rev. Mod. Phys. 85, 693 (2013)

Basis optimization: Stochastic Variational Method

Possibility of the stochastic optimization

- 1. increase the basis dimension one by one
- 2. set up an optimal basis by trial and error procedures
- 3. fine tune the chosen parameters until convergence
 - **1.** Generate $(A_k^1, A_k^2, \dots, A_k^m)$ randomly
 - **2.** Get the eigenvalues $(E_k^1, E_k^2, \cdots, E_k^m)$
 - **3.** Select A_k^n corresponding to the lowest E_k^n and **Include** it in a basis set

 $4. \quad k \rightarrow k+1$

Y. Suzuki and K. Varga, Stochastic variational approach to quantummechanical few-body problems, LNP 54 (Springer, 1998). K. Varga and Y. Suzuki, Phys. Rev. C52, 2885 (1995).

Energy curves

- Optimization only with a real part of the $\overline{K}N$ pot.
- Two-body $\overline{K}N$ energy is selfconsistently determined
- AV4' NN pot. is employed

Validity of this approach is confirmed in the three-body (K-pp) system

Properties of K⁻pp

Model	Ky	AY	
	Type I	Type II	
B (MeV)	27.9	26.1	48.7
Γ (MeV)	30.9	59.3	61.9
$\delta\sqrt{s}$ (MeV)	-61.0 - i25.0	-30.2 - i23.7	
$P_{K^{-}}$	0.65	0.65	0.64
$P_{ar{K}^0}$	0.35	0.35	0.36
$\sqrt{\langle r_{NN}^2 \rangle}$ (fm)	2.16	2.07	1.84
$\sqrt{\langle r_{\bar{K}N}^2 \rangle}$ (fm)	1.80	1.73	1.55
$\sqrt{\langle r_N^2 \rangle}$ (fm)	1.12	1.08	0.958
$\sqrt{\langle r_{\vec{K}}^2 \rangle}$ (fm)	1.14	1.10	0.988

Kyoto $\overline{K}N$ **pot.** Similar binding energies with Types I and II ~27-28 MeV AY pot.

Deeper binding energy ∼49MeV → Smaller rms radii

Nucleon Density distributions

> Central nucleon density $\rho(0)$ is enhanced by kaon > $\rho(0)^{0.7}$ fm⁻³ at maximum, ~2 times higher than that without \overline{K}

Interaction dependence

Binding energy and decay width with different NN potential models

Not sensitive to the NN interaction models

Nucleon density distributions

AV4' and ATS3 potential: strong short-range repulsion MN: weak short-range repulsion

Structure of $\overline{K}NNNNN$ with $J^{\pi}=0^{-}$ and 1^{-}

KN interaction in I=0 is more attractive than in I=1, and J=0 state containing more I=0 component than J=1

 \rightarrow Energy gain in J=0 is larger than J=1 channel

> AY potential in I=0 is strongly attractive

 \rightarrow J=0 ground state

Kaonic hydrogen (atomic system)

- Bound mainly with Coulomb int. (like e⁻ in H)
- *KN* interaction induces "level shift"
- Precise measurement

(2011, SIDDHARTA experiment , DA Φ NE) Bazzi et al., NPA881 (2012) $\epsilon_{1s} = 283 \pm 36(\text{stat}) \pm 6(\text{syst})\text{eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst})\text{eV}$

Constraint for \overline{KN} interaction: Kaonic deuterium

• Isospin dependence of \overline{KN} interactions

– I=0: well determined by $\Lambda(1405)$ properties

– I=1: constraint is weak only with kaonic hydrogen

 Precise kaonic deuterium data (Exp. and theor.) are highly desired

$$|K^{-}p\rangle = |\uparrow\downarrow\rangle$$

= $|I = 0\rangle + |I = 1\rangle$
 $|K^{-}n\rangle = |\uparrow\uparrow\rangle$
= $|I = 1\rangle$

Kaonic deuterium

I=0:I=1=1:3

Three-body calculation for kaonic deuterium

Hamiltonian

$$H = T + V = \sum_{i=1}^{3} \frac{p_i^2}{2m_i} - T_{cm} + V^{NN} + V^{N\overline{K}} + V^{coul}$$

 V^{NN} (Minnesota potential) D. R. Thompson, M. Lemere and Y. C. Tang, NPA286 (1977) $V^{N\overline{K}}$ (Kyoto $\overline{K}N$ potential) K.Miyahara, T.Hyodo, PRC93 (2016)

- The Kyoto KN pot. simulates scattering amplitude calculated from NLO chiral SU(3) dynamics
 Y.Ikeda, T.Hyodo, W.Weise, NPA881 (2012)
 - 1. Scattering length extracted from the energy shift measured in SIDDHARTA experiment.
 - 2. Cross section of a $\overline{K}N$ two-body scattering
 - 3. Branching ratio of the $\overline{K}p$ decay

Three-body calculation

Variational Method

Wave function

Correlated Gaussian basis

$$\begin{split} \Psi &= \sum_{i=1}^{N} c_{i} \phi_{i}, \qquad \phi = A_{NN} \left\{ e^{-\frac{1}{2} \widetilde{x} A x} [[y_{L_{1}}(\widetilde{u}x) y_{L_{2}}(\widetilde{v}x)]_{L} \chi_{S}]_{JM} \eta_{TM_{t}} \right\} \\ A: 2 \times 2 \text{ positive definite symmetric matrix} \\ x &= \{x_{1}, x_{2}\}, \ \widetilde{u}x = u_{1} x_{1} + u_{2} x_{2}, \ \widetilde{v}x = v_{1} x_{1} + v_{2} x_{2} \\ y_{lm}(\widetilde{u}x) &= (\widetilde{u}x)^{l} Y_{lm}(\widehat{u}x) \\ \chi_{IM}: \text{ spin function}, \ \eta_{TM_{t}}: \text{ isospin function} \end{split}$$

- Geometric progression for Gaussian fall-off parameters
 - Cover 0.1-500 fm
 - $L_1 + L_2 \le 4$
 - About 8000 basis states
- Channel coupling

$$|K^-pn\rangle = |\downarrow\uparrow\downarrow\rangle, \quad |\bar{K}^0nn\rangle = |\uparrow\downarrow\downarrow\rangle$$

Precise calculation

Generalized eigenvalue problem

$$\sum_{j=1}^{K} (H_{ij} - EB_{ij})C_j = 0 \qquad \qquad H_{ij} = \langle \Phi_i | H | \Phi_j \rangle \qquad B_{ij} = \langle \Phi_i | \Phi_j \rangle$$

New orthonormal set

$$\phi_{\mu} = \frac{1}{\sqrt{\mu}} \sum_{i=1}^{K} c_i^{(\mu)} \Phi_i \qquad \Rightarrow \qquad \sum_{j=1}^{N} (H_{ij} - EB_{ij}) C_j = 0.$$

Cutoff parameter $\lambda_{\rm cut} = \mu_{\rm max}/\mu_{\rm min}$

$\log_{10} \lambda_{\mathrm{cut}}$	N	$\operatorname{Re}[E]$ (MeV)
16	1677	-2.211689436
17	2194	-2.211722964
18	2377	-2.211732072
19	2511	-2.211735493
20	2621	-2.211737242
21	2721	-2.211737609
22	2806	-2.211737677
23	2879	-2.211737682

Energy levels of 1S, 2P, 2S states

	$E_{1S}(\text{keV})$	$E_{2P}(\text{keV})$	$E_{2S}(\text{keV})$
Coulomb	-10.398	-2.602	-2.600
Uniform charge (2-body)	-10.401	-2.602	-2.601
Point charge (2-body)	-10.406	-2.602	-2.602
$\operatorname{Coulomb} + \overline{K}N$	-9.736 - i 0.508	-2.602 - i 0.000	-2.517 - i 0.067

- No level shift of 2P state
- Transition energy can directly be used for the extraction of the 1S level shift

Level shift of kaonic deuterium

$$\Delta E - i\frac{\Gamma}{2} = (670 - i\,508)\,\mathrm{eV},$$

Sensitivity of I=1 component

- $Re V^{\overline{K}N} = Re V_{I=0} + \beta \times Re V_{I=1}$
- Factor for the real part of the KN potential within the SIDDHARTA constraint for the level shift of kaonic hydrogen
 - ▶ 283 ± 36(stat) ± 6(syst)eV

Energy shifts of kaonic hydrogen and deuterium

	K^-p		K^-d	
β –	ΔE	Γ	ΔE	Γ
1.08	287	648	676	1020
1.00	283	607	670	1016
-0.17	310	430	506	980

∼25% uncertainty Possible constraint for I=1

Conclusions

Unified description of kaonic atom and nuclear systems — Kaonic nucleus (3- to 7-body)

- Central density is increased by ~ 2 times with $\overline{K}N$ int.
 - Soft NN interaction induces too high central densities
- Inverted spin-parity in the g.s, of ⁶Li \overline{K} is predicted

- Isospin dependence of $\overline{K}N$ interaction is essential

- Kaonic atom (3-body)
 - Prediction of the energy shift of the kaonic deuterium

$$\Delta E - i \frac{\Gamma}{2} = (670 - i\,508)\,\mathrm{eV},$$

 I=1 component can be constrained if measurement is performed within 25% uncertainty (Planned exp. accuracy ~5-10%)