KN interaction and Kaonic nuclei

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

KN interaction - Systematic analysis in chiral SU(3) dynamics Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012) - Realistic **KN** potential T. Hyodo, W. Weise, PRC77, 035204 (2008) K. Miyahara. T. Hyodo, PRC93, 015201 (2016) (Selected topics of) Kaonic nuclei - Few-body systems up to A=6 S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, T. Hyodo, arXiv:1701.07589 [nucl-th], PRC in press.

K meson and **K**N interaction

Two aspects of $K(\overline{K})$ meson

- NG boson of chiral SU(3)_R \otimes SU(3)_L -> SU(3)_V
- Massive by strange quark: m_K ~ 496 MeV

—> Spontaneous/explicit symmetry breaking

KN interaction ...T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

is coupled with π∑ channel
generates ∧(1405) below threshold

molecule three-quark

- is fundamental building block for \overline{K} -nuclei, \overline{K} in medium, ...,

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

 Shift and width of atomic state <-> K-p scattering length U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)
 Quantitative constraint on the KN interaction at fixed energy 4 Systematic analysis in chiral SU(3) dynamics

 Strategy for KN interaction

Above the KN threshold: direct constraints

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the $\overline{K}N$ **threshold: indirect constraints**

- πΣ mass spectra (new data: LEPS, CLAS, HADES,...)

Construction of the realistic amplitude

Chiral coupled-channel approach with systematic χ^2 fitting

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012)

Best-fit results

		_	TW	TWB	NLO	Experiment		
C		$\Delta E \ [eV]$	373	377	306	$283 \pm 36 \pm 6$	[10]	
2		$\Gamma \ [eV]$	495	514	591	$541 \pm 89 \pm 22$	[10]	
	(γ	2.36	2.36	2.37	2.36 ± 0.04	[11]	
Branching ratios		R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]	
		R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]	
		$\chi^2/{ m d.o.f}$	1.12	1.15	0.96			
ctions	$\begin{bmatrix} \mathbf{q} & 350 \\ 300 \\ \mathbf{M} & 250 \\ \mathbf{M} & 200 \\ \mathbf{M} & 150 \\ \mathbf{M} & \mathbf{M} \\ \mathbf{b} & 50 \\ 0 & 50 \\ 0 & 50 \\ 0 & 50 \\ 0 & 50 \\ 0 & 50 \\ \mathbf{D} \\ \mathbf{B}_{\mathbf{lab}} & [\mathbf{MeV/c}] \end{bmatrix}$	250	$ \begin{array}{c} $	TW TWB NLO 150 200 250 ab [MeV/c]	$\begin{bmatrix} 90 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	100 150 Plab [MeV	TW TWB NLO	250
cross sec	$\begin{bmatrix} \mathbf{q} \\ \mathbf{m} $		$ \begin{array}{c} 140\\ 0\\ 120\\ 120\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	TW TWB TWB NLO 150 200 250 ab [MeV/c]	$\begin{bmatrix} qu \\ qu \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \mu \\ 0 \\ \mu \\ 0 \\ 0 \\$	100 150 Plab [MeV	TWB	250

K-hydrogen and cross sections are consistent (c.f. DEAR).

Comparison with SIDDHARTA

	TW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957

TW and TWB are reasonable, while best-fit requires NLO.

Subthreshold extrapolation

Uncertainty of $\overline{K}N \longrightarrow \overline{K}N$ (I=0) amplitude below threshold

<u>Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise,</u> <u>Nucl. Phys. A954, 41 (2016)</u>

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

Realistic KN potential

Construction of KN **potential**

Local **K**N potential is useful for

- extraction of the wave function of $\Lambda(1405)$
- application to few-body Kaonic nuclei

Single-channel energy-dependent KN potential

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

- Chiral dynamics (thin)

T(W) = V(W) + V(W)G(W)T(W)

- Potential (thick) U(W,r) + Schrödinger eq.

- Reasonable on-shell scattering amplitude on real axis

Realistic **KN** potential

Realistic KN potential

Issues to be improved:

- Amplitude was not constrained by SIDDHARTA
- Pole structure of the amplitude was not reproduced.

Construction of realistic potential

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- Chiral SU(3) at NLO with SIDDHARTA
- Equivalent amplitude in the complex energy plane

40 0.2 20 0.4 0 [MeV] 0.6 0.8 -20X 1 -401.2 1.4 -601.6 1.8 -80-1001340 1360 1440 1380 1400 1420 Re z [MeV]

deviation from

original amplitude

Kyoto $\overline{K}N$ potential reproduces data χ^2 /dof ~ 1: realistic

Kaonic nuclei

Few-body K nuclear systems

<u>S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo,</u> arXiv:1701.07589 [nucl-th], PRC in press.

- Stochastic variational method with correlated gaussians
- KN : Kyoto KN potential, NN: AV4' (hard core)

Few-body \overline{K} **nuclear systems**

	KNN	K NNN	KNNNN	KNNNNN
B [MeV]	25-28	45-50	68-76	70-81
Γ[MeV]	31-59	26-70	28-74	24-76

- bound below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy

(Selected topics of) Kaonic nuclei

High density?

Nucleon density distribution in four-nucleon system

- central density increases (not substantially <- NN core)
- B = 68-76 MeV (Kyoto $\overline{K}N$)
- B = 85-87 MeV (AY)

Central density is not always proportional to B < - tail of w.f₁₃

NN correlation $< \overline{K}N$ correlation (also in A=6)

(Selected topics of) Kaonic nuclei

Interplay between NN and KN correlations 2

Four-nucleon system with $J^{\pi}=0^{-}$, I=1/2, $I_3=+1/2$

- KN correlation

I=0 pair in K-p (3 pairs) or \overline{K}^0 n (2 pairs) : C₁ > C₂

- NN correlation

ppnn forms α : $C_1 < C_2$

- Numerical result

 $|C_1|^2 = 0.08, |C_2|^2 = 0.92$

NN correlation > $\overline{K}N$ correlation

Summary

Summary: ∧(1405)

KN scattering is quantitatively described
(x²/d.o.f. ~ 1) by NLO chiral coupled-channel approach with accurate K-p scattering length.
Realistic KN potential is now available.
Few-body kaonic nuclei exist as quasi-bound states. Structure is determined by the interplay between NN and KN correlations.

