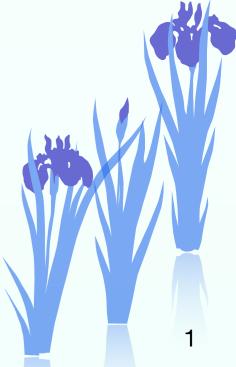
Determination of compositeness with generalized weak-binding relation

Yukawa Institute for Theoretical Physics (Kyoto U) Yuki Kamiya

Tetsuo Hyodo

@Strangeness and charm in hadrons and dense matter



Contents

slntroduction ~weak-binding relation for bound state~

Section S

Section S

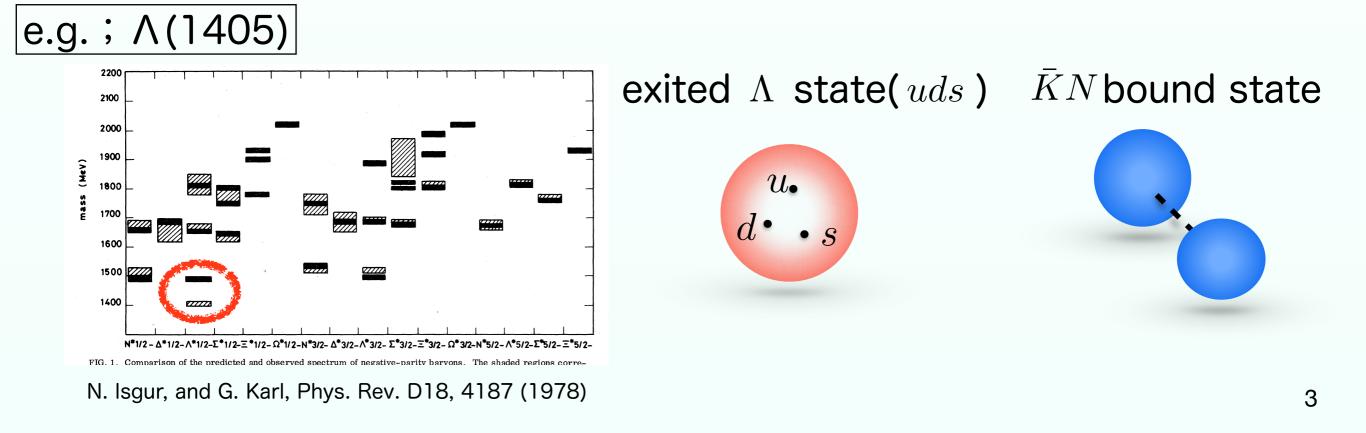
Sequence Applications to exotic hadrons ~ $\Lambda(1405)$ ~

Introduction ~exotic hadrons~

Exotic hadrons

- Hadrons which do not coincide with the predictions of the quark model. More complicated internal structure can be expected.
 - tetra quark, penta quark
 - hadron molecule \cdots

It is important to reveal the internal structure of exotics.



Compositeness

Seak-binding relation

S. Weinberg, Phys. Rev. 137, B672 (1965) We consider the stable and s-wave bound state (deuteron) $|d\rangle$ in the n-p scattering.

 $Z \equiv |\langle B_0 | d \rangle|^2$ $|B_0 \rangle$: bare state

 $1 - Z = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} |\langle \mathbf{p} | d \rangle|^2 \quad (=X) \quad |\mathbf{p}\rangle \quad : \text{(n-p) scattering state} \checkmark$

Without assuming the specific nuclear force,

the following weak-binding relation is derived

for the scattering length a_0 , binding energy B, and compositeness X.

$$a_0 = R\left[rac{2X}{1+X} + \mathcal{O}\left(rac{1}{Rm_{\pi}}
ight)
ight] \qquad R = rac{1}{\sqrt{2\mu B}} \qquad \mu ext{ ; reduced mass}$$

When the binding energy is so small that $1/(Rm_{\pi})$ can be neglected, the compositeness X can be determined only from experimental observables (a_0, B).

We can study the internal structure model-independently.

q

 $\bullet X = 0$

eigenstates

 $\mathcal{H}_{ ext{free}}$

of

Contents

Introduction ~weak-binding relation for bound state~

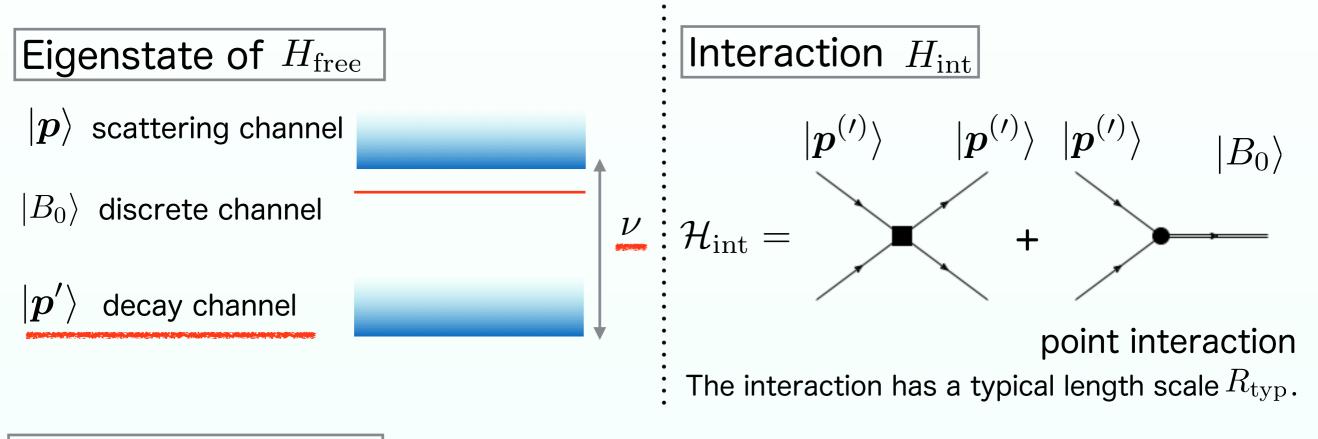
Extension to the quasibound state

Section S

Sequence Applications to exotic hadrons ~ $\Lambda(1405)$ ~

Seffective field theory

To discuss the near-threshold physics, we use following non-relativistic EFT.



Eigenstate of full $H = H_{\text{free}} + H_{\text{int}}$

Unstable quasibound state $|QB\rangle$ exists near $|{m p}
angle$ threshold.

 $H|QB\rangle = E_{QB}|QB\rangle$ $E_{QB} = -B - i\Gamma/2$; complex

We consider the compositeness of $|p\rangle$ channel ;*X*.

Scattering amplitude for channel |p>

The T matrix T(E) in this theory is obtained by solving Lippmann-Schwinger Eq. for channel |p> :

$$T = v^{\text{eff}} + v^{\text{eff}}GT = [1/v^{\text{eff}} - G(E)]^{-1}$$

 $v^{
m eff}(E): {{
m effective interaction for channel |p>} \ {
m including the contribution of |p'> and |B_0>}$

G(E): loop function regularized with sharp momentum cutoff Λ

$$\mathcal{F}(E) = -\frac{\mu}{2\pi}T(E) = -\frac{\mu}{2\pi}\frac{1}{1/v^{\text{eff}} - G(E)}$$

Definition of compositeness

Bound state

Bound state $|B\rangle$ is normalized with $\langle B|B\rangle = 1$ $X \equiv \int \frac{d^3p}{(2\pi)^3} \langle B|p\rangle \langle p|B\rangle$ $= \int \frac{d^3p}{(2\pi)^3} |\langle p|B\rangle|^2$ $Z \equiv |\langle B_0|B\rangle|^2$

•
$$X + Z = 1$$

• $0 < X, Z < 1$

The probabilistic interpretation is guaranteed for X and Z.

Quasibound state To normalize unstable state, we introduce Gamow state $|\overline{QB}\rangle$. Normalization condition becomes $\langle \overline{QB} | QB \rangle = \langle QB^* | QB \rangle = 1.$

T. Berggren, Nucl. Phys. A 109 (1968)

The expectation value of any operator becomes complex number.

$$\bullet X + Z = 1$$

$$0 < X, Z < 1 \ X, Z \in C$$

$$\zeta$$

$$X \equiv \int \frac{d^3 p}{(2\pi)^3} \langle \overline{QB} | p \rangle \langle p | QB \rangle$$

The probabilistic interpretation is not guaranteed!

• Definition of compositeness

$$X \equiv \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \langle \overline{QB} | \boldsymbol{p} \rangle \langle \boldsymbol{p} | QB \rangle$$

- Schrödinger Eq. for eigenstate $H|QB>=E_{h}|QB> \label{eq:eq:eq:eq:eq:eq:eq:eq}$

Compositeness X can be expressed with the terms of scattering:

$$X = \frac{G'(E_{QB})}{G'(E_{QB}) - [1/v^{\text{eff}}(E_{QB})]'}$$

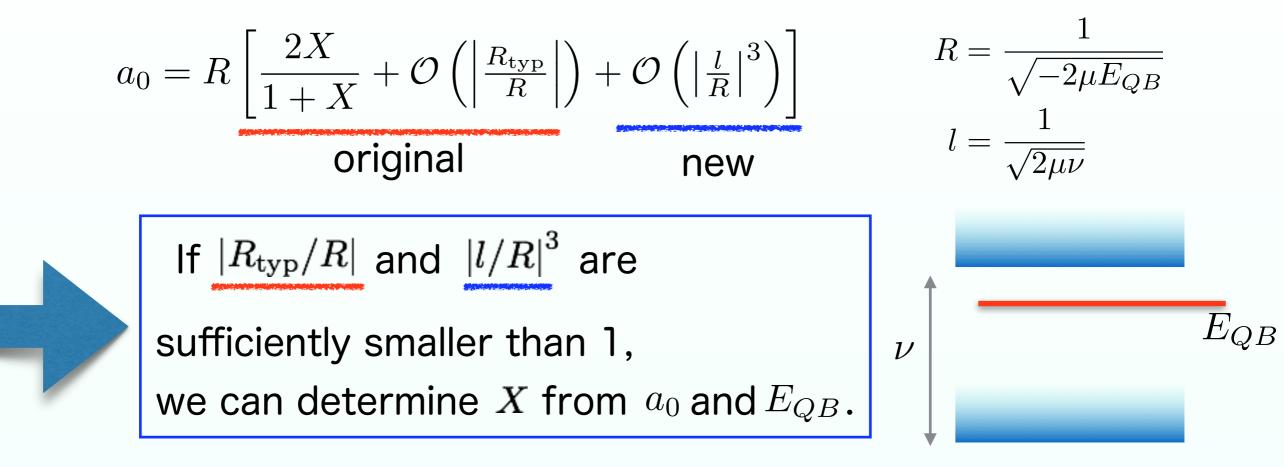
Assuming $|E_{QB}|$ is small, we expand $1/a_0$ with respect to E_{QB} .

 $\frac{1}{a_0} = -\frac{2\pi}{\mu} \left[1/v^{\text{eff}}(E_{QB}) - G(E_{QB}) - \left([1/v^{\text{eff}}(E_{QB})]' - G'(E_{QB}) \right) E_{QB} + \cdots \right]$

higher order terms

Extended Weak binding relation

Y. Kamiya and T. Hyodo, PTEP 023D02 (2017).



* Note

- *a*₀, *E*_{QB}, *X* are all complex numbers,
 then above relation is established among them.
- The same argument is valid for the case with $\operatorname{Re} E_h > 0$.

Interpretation of X

Our proposal

c.f. T. Berggren, Phys. Lett. B 33 (1979) 8

For probabilistic interpretation we define the following real quantities.

- $\tilde{\boldsymbol{X}}$; probability of finding the scattering state in physical state
- \tilde{Z} ; probability of finding the other states
- \boldsymbol{U} ; degree of uncertainty of the interpretation

conditions :

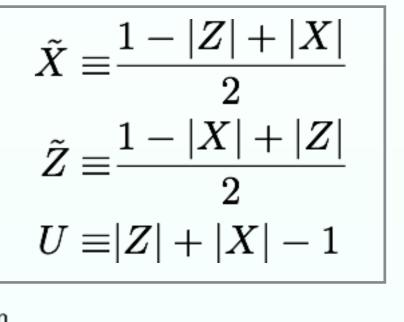
- $\bullet \tilde{X} + \tilde{Z} = 1$
- $0 \leq \tilde{X}, \tilde{Z} \leq 1$

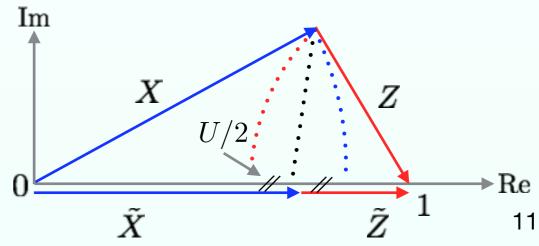
• When there is no cancellation in X + Z, $\tilde{X} = X, \tilde{Z} = Z, U = 0 \ .$

• U becomes large

when the cancellation becomes large.

Solid interpretation is possible only when U is small.





Error estimation of compositeness

For the actual application to Hadrons,

the Higher-order terms are finite and give the correction.

$$a_0 = R\left[\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right]$$

The magnitude of the higher-order terms cannot be determined from the observables.

—> We give the uncertainty band $\tilde{X}_l < \tilde{X} < \tilde{X}_u$ as follows.

(1) We vary ξ_c in the region : $|\xi_c| \leq |R_{\text{typ}}/R| + |l/R|^3$ (2) calculate \tilde{X} at each ξ_c with $X = \frac{a_0/R + \xi_c}{2 - a_0/R - \xi_c} \quad \tilde{X} = \frac{1 + |X| - |1 - X|}{2} \qquad \tilde{X}_u \quad \tilde{X}_u \quad \frac{R_{\text{typ}}}{R} + \left|\frac{l}{R}\right|^3$ (3) assign the maximum (minimum) value of \tilde{X}

(3) assign the maximum (minimum) value of \tilde{X} as $\tilde{X}_{\mathrm{u}}(\tilde{X}_{\mathrm{l}})$.

Contents

Introduction ~weak-binding relation for bound state~

Section S

Extended relation with the CDD pole contribution

Sequence Applications to exotic hadrons ~ $\Lambda(1405)$ ~

CDD pole and weak-binding relation

Solution Score CDD (Castillejo Dalitz Dyson) pole(E_c) and internal structure

CDD pole : $f(E_c) = 0$ L. Castillejo, H

L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 453 (1956).

G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961).

 $\boldsymbol{\cdot}$ represents the contribution from outside the model space

V. Baru et al, Eur. Phys. J. A44, 93 (2010), 1001.0369.
T. Hyodo, Phys. Rev. Lett. 111 (2013) 132002.
Z.-H. Guo and J. A. Oller, Phys. Rev. D93, 054014 (2016), 1601.00862.

Condition of the weak-binding relation In the derivation of the relation Ewe assume that the effective range expansion (ERE) works well at the pole of the eigenstate. bound $f(E) = \left[-\frac{1}{a_0} + \frac{r_e}{2}p^2 - ip \right]^{-1}$ (s-wave) convergence region of ERE EWhen the CDD pole lies near the threshold and ERE fails to describe the eigenstate, $_{A}$ the weak-binding relation is not applicable. CDD S. Weinberg, Phys. Rev. 137, B672 (1965) To include the CDD pole contribution to the estimation of X, the extension of the weak-binding relation is needed. 14

Derivation without convergence of ERE

For simplicity, we consider the stable bound state case.

Sector Another derivation of relation

 $X = -q^2 G'(E_B)$

The expression of compositeness with the loop fcn. and the coupling constant is given as

 $X \equiv \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} |\langle \boldsymbol{p} | B \rangle|^2$ $H|B\rangle = E_B|B\rangle(E_B < 0)$ $|B\rangle$: bound state

$$\begin{split} G(E) &: \text{loop function} \\ X &= -g^2 G'(E_B) & g^2 &: \text{coupling constant between} |p\rangle \text{and } |B\rangle. \\ &\quad \text{(or residue of bound state pole)} \\ &\quad \text{Two factors are expressed with observables as follows} \\ \bullet \text{ G(E)} \\ &\quad G'(E_B) = \frac{\mu}{4\pi E_B R} \left\{ 1 + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\} & \begin{array}{c} R \equiv 1/\sqrt{-2\mu E_B} \\ R_{\text{typ}} : \text{typical length scale of int. } (\sim 1/\Lambda) \\ \end{array}$$

coupling constant g²

• G(E)

$$g^2 = -\lim_{E \to E_B} \frac{2\pi}{\mu} (E - E_B) f(E)$$

< — if the approximation of f(E) with physical observables is given, 15 g² can be expressed

Derivation without convergence of ERE

Sompositeness

T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308.

$$X = -g^2 G'(E_B)$$

If we approximate g^2 with ERE

$$f(E) = [p \cot \delta - ip]^{-1} - \frac{1}{a_0} + \frac{r_e}{2}p^2 + \mathcal{O}(R_{\text{eff}}^3 p^4)$$

$$X \equiv \int \frac{d^{3}\boldsymbol{p}}{(2\pi)^{3}} |\langle \boldsymbol{p} | B \rangle|^{2}$$
$$H | B \rangle = E_{B} | B \rangle (E_{B} < 0)$$
$$| B \rangle : \text{bound state}$$
$$^{2} = -\lim_{E \to E_{B}} \frac{2\pi}{\mu} (E - E_{B}) f(E)$$

 R_{eff} : range scale characterizing ERE

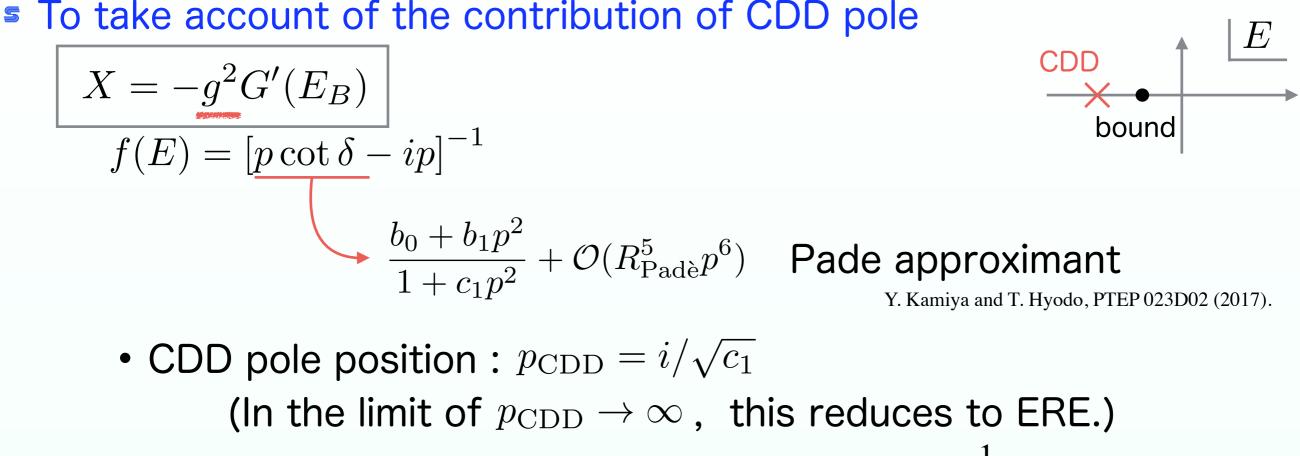
g

equivalent to the original Weinberg's relation.

In this approximation, the CDD pole contribution drops out from the weak-binding relation.

To include the CDD pole contribution, a better approximation for g^2 is needed .

Extended relation with the CDD pole contribution



• Relation to the threshold parameters : $a_0 = -\frac{1}{b_0}$ $r_e = 2(b_1 - b_0c_1)$

$$X = \left[1 - \frac{4R(a_0 - R)^2}{a_0^2 r_e} + \mathcal{O}\left(\left(\frac{R_{\text{Padè}}}{R}\right)^5\right)\right]^{-1} \left(1 + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right)$$

Even when a CDD pole lies near the threshold,

we can estimate the compositeness using experimental observables.

Contents

Introduction ~weak-binding relation for bound state~

Section S

Section S

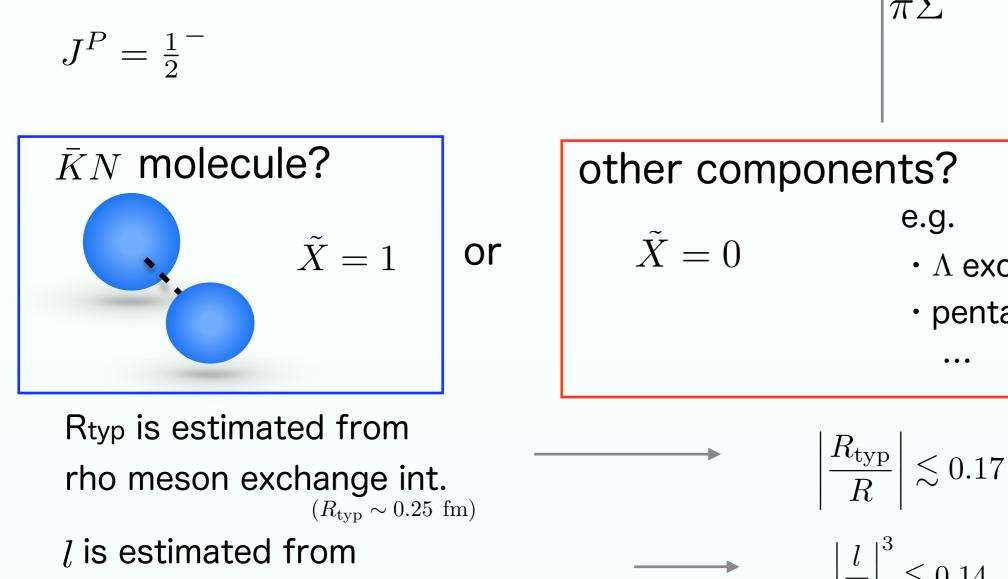
Second states and the second states are associated as a second state of the second states are associated as a second state of the second states are associated as a second state of the second states are associated as a second state of the second states are associated as a second state of the second states are as a second sta

 $R = \frac{1}{\sqrt{-2\mu E_{QB}}}$ $l = \frac{1}{\sqrt{2\mu\nu}}$

 \tilde{X}, U

 $\overline{K}N$

Applications to hadrons



her components?

$$\tilde{X} = 0$$

 $\tilde{X} = 0$
 $\cdot \Lambda$ excited state (uds)
 \cdot penta-quark state
 \cdots

X

 $\nu = 103 \text{ MeV}$ $\pi\Sigma$ X

$$\Lambda(1405)$$
 (I = 0 $\overline{K}N$ scattering)

Applications to hadrons

• $\Lambda(1405)$ in $I = 0 \overline{K}N$ scattering

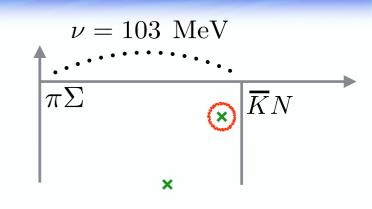
We use E_{QB} and a_0 in the following papers.

Set 1 : Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881 98 (2012)

Set 2 : M. Mai and U. G. Meissner, Nucl. Phys. A 900, 51 (2013)

Set 3 : Z. H. Guo and J. A. Oller, Phys. Rev. C 87, 035202 (2013)

Set 4 and 5 : M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 30 (2015).



Ref.	E_{QB} (MeV)	$a_0 \ ({ m fm})$	X	\tilde{X}	U/2
Set 1	-10-i26	1.39-i0.85	1.3+i0.1	1.0	0.3
Set 2	-4-i8	1.81-i0.92	0.6+i0.1	0.6	0.0
Set 3	-13-i20	1.30-i0.85	0.9-i0.2	0.9	0.1
Set 4	2-i10	1.21-i1.47	0.6+i0.0	0.6	0.0
Set 5	- 3-i12	1.52-i1.85	1.0+i0.5	0.8	0.3

• U is small enough. —> \tilde{X} can be considered as the probability.

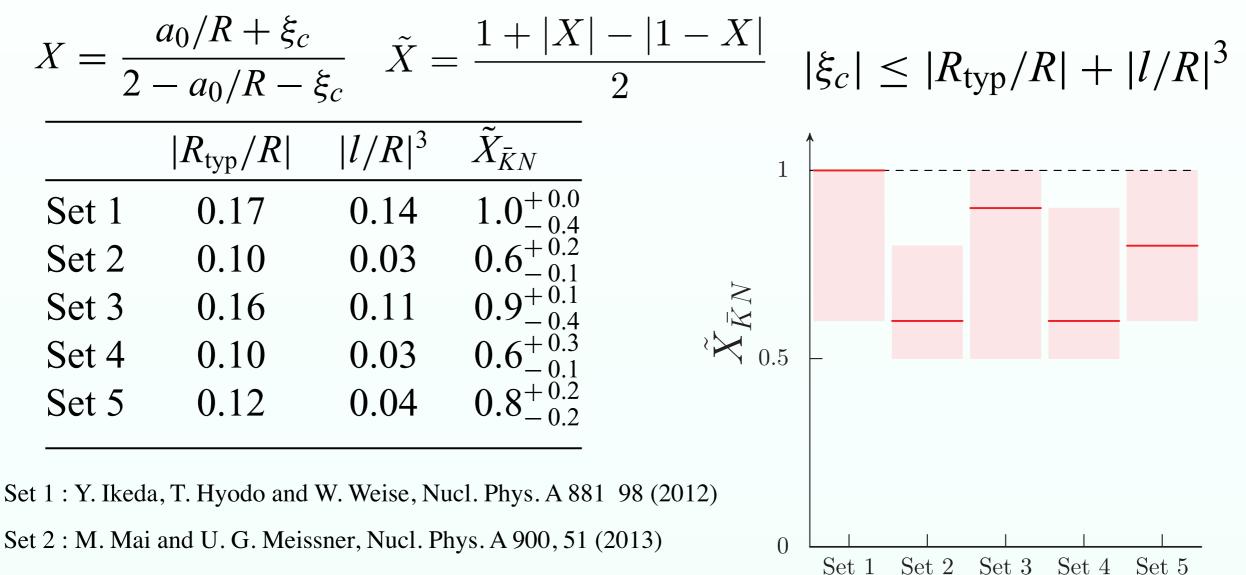
• \tilde{X} is close to 1.

 $\Lambda(1405)$: \overline{KN} composite dominance 20

Applications to hadrons

• $\Lambda(1405)$ in I = 0 $\overline{K}N$ scattering

Uncertainty from the higher order terms is estimated.



Set 3 : Z. H. Guo and J. A. Oller, Phys. Rev. C 87, 035202 (2013)

Set 4 and 5 : M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 30 (2015).

Conclusion of the composite dominance still holds. 21

CDD pole contribution

s The CDD pole contribution to $\Lambda(1405)$

We calculate the compositeness using extended relations with a_0 , r_e , E_h . Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881 98 (2012)

original relationextended relation with CDD
$$X_{R,a_0} = \frac{a_0}{2R - a_0}$$
 $X_{Padè} = \left[1 - \frac{4R(a_0 - R)^2}{a_0^2 r_e}\right]^{-1}$

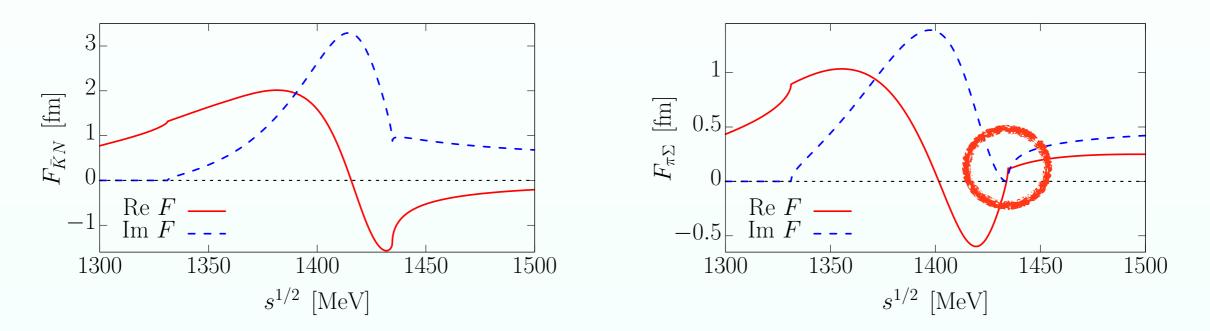
	X_{R,a_0}	$X_{\mathrm{Pad\acute{e}}}$
estimated value of X	1.2+10.2	1.4+i0.2
\tilde{X}	1.0	1.0

This small deviation means that the ERE converges well and the CDD pole contribution in the $\bar{K}N$ channel can be neglected.

CDD pole contribution

The CDD pole contribution to $\Lambda(1405)$

In the I = 0 scattering amplitude in the diagonal $\overline{K}N$ channel $F_{\overline{K}N}$, the CDD pole does not appear in the $\overline{K}N$ threshold energy region.



Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881 98 (2012)

In the $\pi\Sigma$ amplitude, the CDD pole appears at E = 1434 MeV. The ERE description of the $\pi\Sigma$ amplitude around its threshold will not reach the $\bar{K}N$ threshold.

c. f. Yuki Kamiya, Kenta Miyahara, Shota Ohnishi et al. Nucl. Phys. A954, 41 (2016)

Conclusions

Conclusions

Y. Kamiya and T. Hyodo, Phys. Rev. C. 93.035203

Y. Kamiya and T. Hyodo, PTEP 023D02 (2017).

- We extend the weak-binding relation to quasi-bound states and we propose an interpretation of complex X introducing real quantities \tilde{X} and U.

$$a_0 = R\left\{rac{2X}{1+X} + \mathcal{O}\left(|R_{\mathrm{typ}}/R|\right) + \mathcal{O}\left(|l/R|^3
ight)
ight\}$$

- Using the Pade approximant, we take into account the contribution of the near-threshold CDD pole and derive the extended weak-binding relation.
- We apply the method to hadrons and discuss the internal structures.

 $\Lambda(1405)$: $\bar{K}N$ composite dominance

• We show that the CDD pole contribution to the $\Lambda(1405)$ in the $\bar{K}N$ channel is small with the extended weak-binding relation.