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Introduction ~exotic hadrons~
Exotic hadrons

3

Hadrons which do not coincide with the predictions of the quark model. 
More complicated internal structure can be expected.

• tetra quark, penta quark 
•hadron molecule …

e.g.；Λ(1405)18 P-%A VE BARYONS IN THE QUARK MODEL
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FIG. 1. Comparison of the predicted and observed spectrum of negative-parity baryons. The shaded regions corre-
spond to the likely mass values of resonances; the solid bars are the predictions of the text, corresponding to the para-
meters mo= 1610MeV, += 520 MeV, x =0.6, &m =280 MeV, and 15 = 300 MeV.
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FIG. 2. Comparison of the predicted and observed spectrum of negative-parity S = 0 baryons. The predicted composi-
ti.on of a given state is displayed directly above the bar indicating its position. The experimental composition is given in
the most convenient location with respect to the shaded region which indicates its experimental position.

N. Isgur, and G. Karl, Phys. Rev. D18, 4187 (1978)

 bound stateK̄Nexited     state(      )⇤ uds

It is important to reveal the internal structure of exotics.



Compositeness 
Weak-binding relation 

S. Weinberg, Phys. Rev. 137, B672 (1965)

R =
1�
2µB

4

When the binding energy is so small that                 can be neglected, 
the compositeness X can be determined only from experimental observables (    ,   ).  B

1/(Rm�)

We consider the stable and s-wave bound state (deuteron) 
in the n-p scattering.

|d�

|B0�Z � |�B0|d�|2

1 � Z =

�
d3p

(2�)3
|�p|d�|2 (= X) |p�

: bare state

: (n-p) scattering state
eigenstates 
of Hfree

Without assuming the specific nuclear force, 
the following weak-binding relation is derived  
for the scattering length     , binding energy     , and compositeness     .a0 XB

X = 0X = 1

We can study the internal structure model-independently.  

; reduced mass
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Effective field theory 
To discuss the near-threshold physics, 
we use following non-relativistic EFT.

decay channel

Interaction

+

; complex

scattering channel 

discrete channel 

point interaction

Eigenstate of         

Extension to the quasibound state

We consider the compositeness of     channel ;   .

The interaction has a typical length scale        . 

Unstable quasibound state        exists  
near       threshold.

Eigenstate of full    
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Scattering amplitude for channel |p>
The T matrix T(E) in this theory is obtained 
by solving Lippmann-Schwinger Eq. for channel |p> : 

Extension to the quasibound state

   effective interaction for channel |p>  
   including the contribution of |p’> and |B0> 

veff(E) :

T = veff + veffGT = [1/veff −G(E)]−1

G(E) : loop function regularized with sharp momentum cutoff Λ

F(E) = − µ

2π
T (E) = − µ

2π

1

1/veff −G(E)
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Definition of compositeness
Bound state Quasibound state

•　 
•
X + Z = 1

0 < X,Z < 1

The probabilistic interpretation  
is guaranteed for X and Z. 

The probabilistic interpretation 
 is not guaranteed!

T. Berggren, Nucl. Phys. A 109 (1968)

The expectation value of any  
operator becomes complex number.
•  　 
•　　

Extension to the quasibound state

Bound state       is  
normalized with  

To normalize unstable state, 
we introduce Gamow state       . 
Normalization condition becomes

X ⌘
Z

d3p

(2⇡)3
hQB|pihp|QBi



• Definition of compositeness  

• Schrödinger Eq. for eigenstate

9

Extension to the quasibound state

Compositeness X can be expressed  
with the terms of scattering:X ⌘

Z
d3p

(2⇡)3
hQB|pihp|QBi

H|QB >= Eh|QB >

X =
G′(EQB)

G′(EQB)− [1/veff(EQB)]′

Assuming         is small,  
we expand       with respect to       .

|EQB |
EQB1/a0

1

a0
= −2π

µ

[
1/veff(EQB)−G(EQB)−

(
[1/veff(EQB)]

′ −G′(EQB)
)
EQB + · · ·

]

higher order terms 
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original new 

Note

sufficiently smaller than 1, 
we can determine     from     and       .

If              and           are

•     ,  　 ,　  are all complex numbers, 
       then above relation is established among them.  
•The same argument is valid for the case with                .            Re Eh > 0

EQB

Extended Weak binding relation 

Extension to the quasibound state

a0 = R

�
2X

1 + X
+ O

����Rtyp

R

���
�

+ O
��� l

R

��3
��

Y. Kamiya and T. Hyodo, PTEP 023D02 (2017). 



Interpretation of X
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   ; probability of finding the scattering state in physical state 
   ; probability of finding the other states 
   ; degree of uncertainty of the interpretation

X̃

Z̃

U

conditions : 

Our proposal
For probabilistic interpretation we define the following real quantities.

c.f. T. Berggren, Phys. Lett. B 33 (1979) 8

U

Solid interpretation is possible  
only when     is small.

•      
•   
•When there is no cancellation in X + Z, 

                                    . 
•    becomes large  

     when the cancellation becomes large.

X̃ + Z̃ = 1

U

U/2
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Error estimation of compositeness
For the actual application to Hadrons,  
the Higher-order terms are finite and give the correction.

a0 = R

�
2X

1 + X
+ O

����Rtyp

R

���
�

+ O
��� l

R

��3
��

The magnitude of the higher-order terms cannot be  
determined from the observables. 
̶> We give the uncertainty band                    as follows.X̃l < X̃ < X̃u

PTEP 2017, 023D02 Y. Kamiya and T. Hyodo

∣∣∣Re X − X̃
∣∣∣ =

∣∣∣|X | − |Z |
∣∣∣
U
2

≤ U
2

, (84)

where we have used −1 ≤ |Z |− |X | ≤ 1.5 Though |X | and Re X do not always satisfy condition (1),
the difference from X̃ is of the order of U . Thus in the case of small U , they also give a reasonable
estimation of the compositeness, which is consistent with X̃ .

3.6. Error evaluation of compositeness
Finally we construct a method to evaluate the error of the compositeness of the quasibound states.
In contrast to the stable bound states in Sect. 2, the compositeness X and the higher-order terms are
all complex numbers for the quasibound states. Because the probabilistic interpretation is applied to
the real-valued X̃ , here we consider its upper and lower boundaries X̃u and X̃l.

To estimate the effect of the higher-order terms, we first introduce a complex quantity ξc in the
expression of the compositeness as

X = a0/R + ξc

2 − a0/R − ξc
. (85)

In the present case, ξc is made of two components O(|Rtyp/R|) and O(|l/R|3). Both terms are in
general complex with an unknown relative phase. As a conservative error estimation, we allow ξc to
vary in the region

|ξc| ≤ |Rtyp/R| + |l/R|3. (86)

In other words, the largest magnitude of ξc is determined when two terms are coherently added.
We then evaluate X̃ with Eq. (82) by varying ξc with Eq. (86) being the constraint. Denoting the
maximum (minimum) value of X̃ as X̃u (X̃l), we consider the uncertainty band of X̃ as X̃u < X̃ < X̃l.6

4. Weak-binding relation with CDD pole contribution
In the derivation of the weak-binding relation in the previous sections, we have assumed the con-
vergence of the effective range expansion (ERE) at the eigenenergy Reff ! Rtyp above Eq. (44).
While the ERE is a general expression of the near-threshold amplitude, its convergence region does
not always reach the eigenenergy. In this section, we extend the weak-binding relation to the case
where the ERE does not work well. For simplicity, here we consider the stable bound state. The
generalization to the unstable quasibound state is straightforward, as in Sect. 3.

The validity of the ERE is related to the magnitude of Reff in Eq. (43). When Reff is large, the
convergence of the expansion is limited to the small energy region. The most drastic case occurs
when the CDD (Castillejo–Dalitz–Dyson) pole lies near the threshold energy. Because the CDD pole
is defined as the pole of the inverse scattering amplitude F(E)−1, the ERE converges only in the
region |E| < |Ec|, where Ec is the closest CDD pole to the threshold. When the CDD pole is close
to the eigenenergy, |Eh| ∼ |Ec|, the description by the ERE is not appropriate at the eigenenergy,
and then we cannot use the weak-binding relation [14]. The effect of the CDD pole is discussed in
relation to near-threshold states and the compositeness in Refs. [24,25].

5 With this inequality, we can also show that the difference between X̃ and that in Ref. [32] is smaller than
U/2.

6 We note that X̃u/l is not always given by ξc with the inequality (86) being saturated. For instance, if
|a0/R| < |Rtyp/R|+ |l/R|3, X̃l = 0 is given by ξc = −a0/R, whose magnitude is smaller than |Rtyp/R|+ |l/R|3.

16/36

X̃ =
1 + |X|− |1−X|

2

PTEP 2017, 023D02 Y. Kamiya and T. Hyodo
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(1) We vary      in the region : ξc

(2) calculate    at each     with    X̃ ξc

(3) assign the maximum (minimum) value of     
     as             .

X̃

X̃u(X̃l)

ξc

X̃

X̃l

X̃u

∣∣∣∣
Rtyp

R

∣∣∣∣+
∣∣∣∣
l

R

∣∣∣∣
3
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CDD pole and weak-binding relation

14

In the derivation of the relation 
we assume that the effective range expansion (ERE) 
works well at the pole of the eigenstate. bound

convergence region of ERE(s-wave)

When the CDD pole lies near the threshold and ERE fails to describe the eigenstate, 
the weak-binding relation is not applicable.

To include the CDD pole contribution to the estimation of X, 
the extension of the weak-binding relation is needed.

CDD
S. Weinberg, Phys. Rev. 137, B672 (1965)

CDD (Castillejo Dalitz Dyson) pole(    ) and internal structure

Condition of the weak-binding relation

CDD pole : 

・represents the contribution from outside the model space

T. Hyodo, Phys. Rev. Lett. 111 (2013) 132002.
Z.-H. Guo and J. A. Oller, Phys. Rev. D93, 054014 (2016), 1601.00862.

V. Baru et al, Eur. Phys. J. A44, 93 (2010), 1001.0369.

L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 453 (1956). 

G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961). 
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Another derivation of relation 

Two factors are expressed with observables as follows

：typical length scale of int.

: bound state

T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015) 

Derivation without convergence of ERE
For simplicity, we consider the stable bound state case. 

: loop function

: coupling constant between    and     .

The expression of compositeness with the loop fcn.  
and the coupling constant is given as 

G(E)

g2

•G(E)

(or residue of bound state pole)

• coupling constant g2
<̶ if the approximation of f(E) with physical  
      observables is given, 
      g2 can be expressed  
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Compositeness

 : range scale characterizing ERE

T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308. 

Derivation without convergence of ERE

If we approximate     with ERE

equivalent to the original Weinberg’s relation.
In this approximation, the CDD pole contribution drops out  
from the weak-binding relation.

To include the CDD pole contribution, 
a better approximation for      is needed .

: bound state



Extended relation with the CDD pole contribution
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bound

CDD

Pade approximant

Even when a CDD pole lies near the threshold, 
we can estimate the compositeness using experimental observables.

To take account of the contribution of CDD pole 

Y. Kamiya and T. Hyodo, PTEP 023D02 (2017). 

•CDD pole position : pCDD = i/
√
c1

•Relation to the threshold parameters : 
(In the limit of                 ,  this reduces to ERE.)pCDD → ∞

PTEP 2017, 023D02 Y. Kamiya and T. Hyodo

Substituting Eq. (99) into Eq. (95), we obtain the expression for g2 with R, re, and v. Then the
modified weak-binding relation is obtained as

X =
[

1 − re

R
+ v

R3 + O
((

Reff

R

)5
)

+ O
(

Rtyp

R

)]−1

. (100)

When v/R3 is of order O((Reff /R)3), this expression reduces to Eq. (96). Including the term of v/R3,
the estimation of the compositeness is improved. This relation can be rewritten using the condition
of the bound state:

− 1
a0

− re

2
1

R2 + v
4

1
R4 + 1

R
+ 1

R
O((Reff /R)5) = 0. (101)

By eliminating v with Eq. (101), the compositeness is given by R, a0, and re as

X =
[

4R
a0

+ re

R
− 3 + O

((
Reff

R

)5
)

+ O
(

Rtyp

R

)]−1

. (102)

When R satisfies (Reff /R)5 ≪ 1 and Rtyp/R ≪ 1, we can neglect the higher-order terms and calculate
the compositeness from a0, re, and Eh. In Eq. (102), the contribution from the higher-order terms of
the effective range expansion is included in R through condition (101).

4.3. Improvement by Padé approximant
When a CDD pole lies near the threshold, the convergence region of the effective range expansion
may not reach the bound state pole. Here we use the Padé approximant method to describe p cot δ:

p cot δ = b0 + b1p2

1 + c1p2 + O
(
R5

Padé p6), (103)

where RPadé is the length scale characterizing this expansion. With this method, we can describe
the scattering amplitude, which has a CDD pole at p = ±i/

√
c1. This is because f (p) → 0 when

p cot δ → ∞. The threshold parameters are related to the expansion coefficients as

a0 = − 1
b0

, re = 2(b1 − b0c1). (104)

Substituting Eq. (103) into Eq. (95), we obtain an expression for the coupling constant:

g2 = −2πp
µ2

{
2b1p(1 + c1p2) − 2c1p(b0 + b1p2)

(
1 + c1p2

)2 − i + O
(
R5

Padé p5)
}−1

∣∣∣∣∣∣
p=i/R

. (105)

By using this equation, the compositeness is given by

X =
[

2(b1 − c1b0)R2

(c1 − R2)
− 1 + O

((
RPadé

R

)5
)

+ O
(

Rtyp

R

)]−1

. (106)

When c1 → 0, this expression reduces to Eq. (96) with b1 = re/2. Owing to the nonzero value of
c1, the contribution of the CDD pole is included in the estimation of the compositeness. Although
the compositeness is expressed with three coefficients and R in this expression, the coefficients b0
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  (             scattering)  

JP = 1
2

�

e.g. 
・　excited state  (     )  
・penta-quark state 
    …

� uds

molecule?K̄N

X̃ = 1

(Rtyp ⇠ 0.25 fm)

a0 = R

�
2X

1 + X
+ O

����Rtyp

R

���
�

+ O
��� l

R

��3
��

or 

other components?

Rtyp is estimated from  
rho meson exchange int.

  is estimated from 
difference of the threshold energy 

 Applications to hadrons
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Set 1 : Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881  98 (2012)

Set 2 : M. Mai and U. G. Meissner, Nucl. Phys. A 900, 51 (2013)

Set 3 : Z. H. Guo and J. A. Oller, Phys. Rev. C 87, 035202 (2013)

Set 4 and 5 : M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 30 (2015).

in              scattering  
We use        and    in the following papers.a0

           :        composite dominance

•U is small enough. ̶>     can be considered as the probability. 
•   is close to 1.

Ref.

Set 1 -10-i26 1.39-i0.85 1.3+i0.1 1.0 0.3
Set 2 -4-i8  1.81-i0.92 0.6+i0.1 0.6 0.0
Set 3 -13-i20 1.30-i0.85 0.9-i0.2 0.9 0.1
Set 4    2-i10 1.21-i1.47 0.6+i0.0 0.6 0.0
Set 5  - 3-i12 1.52-i1.85 1.0+i0.5 0.8 0.3

X X̃
a0

(MeV) (fm) U/2
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in              scattering  

PTEP 2017, 023D02 Y. Kamiya and T. Hyodo

Fig. 9. The results of error evaluation of the compositeness X̃K̄N of !(1405). The lines denote the central
values and the shaded areas indicate the uncertainty bands.

Fig. 10. I = 0 scattering amplitudes in the K̄N → K̄N (right panel) and π# → π# (left panel) channels
based on Ref. [35] with the isospin-averaged hadron masses. The solid line denotes the real part and the dashed
line denotes the imaginary part.

the π# amplitude has a CDD pole at this energy.10 Thus the ERE description of the π# amplitude
around its threshold will not reach the K̄N threshold because of the CDD pole. The existence of
the CDD pole near the resonance pole in the π# amplitude may be an indication of the non-π#
dominance of !(1405).

In Refs. [20,21,39,40], the compositeness of !(1405) is also calculated in various models by
evaluating the expression in Eq. (89) at the pole position. The results are summarized in Table 4.
In Refs. [39] and [20], the scattering amplitude is calculated from the chiral unitary approach of
Refs. [3] and [35], respectively. In the analysis of Ref. [40], the SU(6) model in Ref. [41] is used.
In Ref. [21], the scattering amplitude based on the unitary chiral perturbation theory in Ref. [37] is
used. We summarize the results in Table 4, specifying the prescription to interpret the compositeness.
We see that these studies give a consistent result for K̄N dominance over the other components. This
is also in good agreement with our model-independent results by the weak-binding relation.

In these studies, Refs. [20] and [21] use the scattering amplitude in Refs. [35] and [37], respectively.
Although Ref. [21] uses a different prescription |X | to determine the compositeness, small U = 0.1 in
set 3 indicates the difference between the prescriptions should be small, as we discussed in Sect. 3.5.

10 In the coupled-channel scattering, each component can have a CDD pole individually. This is in contrast to
the pole of the amplitude representing the eigenstate, which is determined by det F−1 = 0 and the divergence
appears in all the components of Fij.
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U
2

≤ U
2

, (84)

where we have used −1 ≤ |Z |− |X | ≤ 1.5 Though |X | and Re X do not always satisfy condition (1),
the difference from X̃ is of the order of U . Thus in the case of small U , they also give a reasonable
estimation of the compositeness, which is consistent with X̃ .

3.6. Error evaluation of compositeness
Finally we construct a method to evaluate the error of the compositeness of the quasibound states.
In contrast to the stable bound states in Sect. 2, the compositeness X and the higher-order terms are
all complex numbers for the quasibound states. Because the probabilistic interpretation is applied to
the real-valued X̃ , here we consider its upper and lower boundaries X̃u and X̃l.

To estimate the effect of the higher-order terms, we first introduce a complex quantity ξc in the
expression of the compositeness as

X = a0/R + ξc

2 − a0/R − ξc
. (85)

In the present case, ξc is made of two components O(|Rtyp/R|) and O(|l/R|3). Both terms are in
general complex with an unknown relative phase. As a conservative error estimation, we allow ξc to
vary in the region

|ξc| ≤ |Rtyp/R| + |l/R|3. (86)

In other words, the largest magnitude of ξc is determined when two terms are coherently added.
We then evaluate X̃ with Eq. (82) by varying ξc with Eq. (86) being the constraint. Denoting the
maximum (minimum) value of X̃ as X̃u (X̃l), we consider the uncertainty band of X̃ as X̃u < X̃ < X̃l.6

4. Weak-binding relation with CDD pole contribution
In the derivation of the weak-binding relation in the previous sections, we have assumed the con-
vergence of the effective range expansion (ERE) at the eigenenergy Reff ! Rtyp above Eq. (44).
While the ERE is a general expression of the near-threshold amplitude, its convergence region does
not always reach the eigenenergy. In this section, we extend the weak-binding relation to the case
where the ERE does not work well. For simplicity, here we consider the stable bound state. The
generalization to the unstable quasibound state is straightforward, as in Sect. 3.

The validity of the ERE is related to the magnitude of Reff in Eq. (43). When Reff is large, the
convergence of the expansion is limited to the small energy region. The most drastic case occurs
when the CDD (Castillejo–Dalitz–Dyson) pole lies near the threshold energy. Because the CDD pole
is defined as the pole of the inverse scattering amplitude F(E)−1, the ERE converges only in the
region |E| < |Ec|, where Ec is the closest CDD pole to the threshold. When the CDD pole is close
to the eigenenergy, |Eh| ∼ |Ec|, the description by the ERE is not appropriate at the eigenenergy,
and then we cannot use the weak-binding relation [14]. The effect of the CDD pole is discussed in
relation to near-threshold states and the compositeness in Refs. [24,25].

5 With this inequality, we can also show that the difference between X̃ and that in Ref. [32] is smaller than
U/2.

6 We note that X̃u/l is not always given by ξc with the inequality (86) being saturated. For instance, if
|a0/R| < |Rtyp/R|+ |l/R|3, X̃l = 0 is given by ξc = −a0/R, whose magnitude is smaller than |Rtyp/R|+ |l/R|3.
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Table 3. The results of error evaluation of the compositeness X̃K̄N of !(1405) with the value of |Rtyp/R|
and |l/R|3.

|Rtyp/R| |l/R|3 X̃K̄N

Set 1 [35] 0.17 0.14 1.0+ 0.0
− 0.4

Set 2 [36] 0.10 0.03 0.6+ 0.2
− 0.1

Set 3 [37] 0.16 0.11 0.9+ 0.1
− 0.4

Set 4 [38] 0.10 0.03 0.6+ 0.3
− 0.1

Set 5 [38] 0.12 0.04 0.8+ 0.2
− 0.2

the difference between the threshold energy of the K̄N channel and that of the π# channel. Taking
ω = 104 MeV, we obtain l = 0.76 fm. Then we can see that the two higher-order terms in the
weak-binding relation are small, |Rtyp/R| ! 0.17 and |l/R|3 ! 0.14 for each set.

For each set, we have calculated the compositeness XK̄N , X̃K̄N and the uncertainty of the interpre-
tation U with the weak-binding relation in Ref. [7] by neglecting the higher-order terms. The results
are summarized in Table 2. In all sets, U is not large and we can consider that the uncertainty of
the probability interpretation of X̃K̄N is small. The evaluated value of X̃K̄N is close to unity in all
sets. Thus we find that the structure of!(1405) is dominated by the K̄N composite component. The
deviation of the values of the compositeness among the different sets comes from the different values
of a0 and Eh. The uncertainty U is determined for a given set of a0 and Eh, which originates in the
complex nature of the compositeness. The former deviation can be reduced with the improvement of
the analysis of the experimental data, and it will eventually vanish when the exact values of a0 and
Eh are obtained. However, the latter uncertainty is not necessarily small even for the exact values. In
the present analysis, we conclude that the K̄N component of !(1405) reaches 60% ∼ 100% of the
total wave function, and the quantitative uncertainty will be squeezed in future improvement of the
threshold parameters. Given the results in Table 2, the associated value of U is expected to be small.

With the method constructed in Sect. 3.6, we evaluate the uncertainty of X̃K̄N that comes from
the higher-order terms in the weak-binding relation. By adopting the Compton wavelength of the
ρ meson as Rtyp, we constrain the magnitude of the correction term |ξc| ≤ |Rtyp/R|+ |l/R|3. Varying
complex ξc with this condition in Eq. (85), we obtain the uncertainty band of X̃K̄N for each set as
shown in Table 3. The results are graphically shown in Fig. 9. In all cases, we see that the value
of X̃K̄N is larger than 1/2 even if the uncertainty band is taken into account. Thus the qualitative
conclusion of the composite dominance still holds .

To investigate the CDD pole contribution to the !(1405) state, we calculate the compositeness
with extended relations (112) and (113), using the a0 = 1.39 − i0.85 fm, re = 0.24 − i0.05 fm, and
Eh = −10 − i26 MeV determined from the amplitude in Ref. [35]. Then the calculated values of
(XK̄N , X̃K̄N ) are (1.3 + i0.2, 1.0) with Eq. (112) and (1.4 + i0.2, 1.0) with Eq. (113). These values
are close to those of set 1 in Table 2. This means that the ERE converges well and the CDD pole
contribution can be neglected. To check this, we show the I = 0 scattering amplitude in the diagonal
K̄N channel based on Ref. [35] in the left panel of Fig. 10. We do not find any CDD pole, which is
defined as |F(Ec)| = 0, in the energy region between 1300 and 1500 MeV. This guarantees that the
ERE of the K̄N amplitude around threshold is not disturbed by the CDD pole contribution. It is also
instructive to look at the amplitude in the diagonal π# channel shown in the right panel of Fig. 10.
We notice that both the real and imaginary parts of the amplitude vanish around 1434 MeV. Namely,
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Table 3. The results of error evaluation of the compositeness X̃K̄N of !(1405) with the value of |Rtyp/R|
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the difference between the threshold energy of the K̄N channel and that of the π# channel. Taking
ω = 104 MeV, we obtain l = 0.76 fm. Then we can see that the two higher-order terms in the
weak-binding relation are small, |Rtyp/R| ! 0.17 and |l/R|3 ! 0.14 for each set.

For each set, we have calculated the compositeness XK̄N , X̃K̄N and the uncertainty of the interpre-
tation U with the weak-binding relation in Ref. [7] by neglecting the higher-order terms. The results
are summarized in Table 2. In all sets, U is not large and we can consider that the uncertainty of
the probability interpretation of X̃K̄N is small. The evaluated value of X̃K̄N is close to unity in all
sets. Thus we find that the structure of!(1405) is dominated by the K̄N composite component. The
deviation of the values of the compositeness among the different sets comes from the different values
of a0 and Eh. The uncertainty U is determined for a given set of a0 and Eh, which originates in the
complex nature of the compositeness. The former deviation can be reduced with the improvement of
the analysis of the experimental data, and it will eventually vanish when the exact values of a0 and
Eh are obtained. However, the latter uncertainty is not necessarily small even for the exact values. In
the present analysis, we conclude that the K̄N component of !(1405) reaches 60% ∼ 100% of the
total wave function, and the quantitative uncertainty will be squeezed in future improvement of the
threshold parameters. Given the results in Table 2, the associated value of U is expected to be small.

With the method constructed in Sect. 3.6, we evaluate the uncertainty of X̃K̄N that comes from
the higher-order terms in the weak-binding relation. By adopting the Compton wavelength of the
ρ meson as Rtyp, we constrain the magnitude of the correction term |ξc| ≤ |Rtyp/R|+ |l/R|3. Varying
complex ξc with this condition in Eq. (85), we obtain the uncertainty band of X̃K̄N for each set as
shown in Table 3. The results are graphically shown in Fig. 9. In all cases, we see that the value
of X̃K̄N is larger than 1/2 even if the uncertainty band is taken into account. Thus the qualitative
conclusion of the composite dominance still holds .

To investigate the CDD pole contribution to the !(1405) state, we calculate the compositeness
with extended relations (112) and (113), using the a0 = 1.39 − i0.85 fm, re = 0.24 − i0.05 fm, and
Eh = −10 − i26 MeV determined from the amplitude in Ref. [35]. Then the calculated values of
(XK̄N , X̃K̄N ) are (1.3 + i0.2, 1.0) with Eq. (112) and (1.4 + i0.2, 1.0) with Eq. (113). These values
are close to those of set 1 in Table 2. This means that the ERE converges well and the CDD pole
contribution can be neglected. To check this, we show the I = 0 scattering amplitude in the diagonal
K̄N channel based on Ref. [35] in the left panel of Fig. 10. We do not find any CDD pole, which is
defined as |F(Ec)| = 0, in the energy region between 1300 and 1500 MeV. This guarantees that the
ERE of the K̄N amplitude around threshold is not disturbed by the CDD pole contribution. It is also
instructive to look at the amplitude in the diagonal π# channel shown in the right panel of Fig. 10.
We notice that both the real and imaginary parts of the amplitude vanish around 1434 MeV. Namely,
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where we have used −1 ≤ |Z |− |X | ≤ 1.5 Though |X | and Re X do not always satisfy condition (1),
the difference from X̃ is of the order of U . Thus in the case of small U , they also give a reasonable
estimation of the compositeness, which is consistent with X̃ .

3.6. Error evaluation of compositeness
Finally we construct a method to evaluate the error of the compositeness of the quasibound states.
In contrast to the stable bound states in Sect. 2, the compositeness X and the higher-order terms are
all complex numbers for the quasibound states. Because the probabilistic interpretation is applied to
the real-valued X̃ , here we consider its upper and lower boundaries X̃u and X̃l.

To estimate the effect of the higher-order terms, we first introduce a complex quantity ξc in the
expression of the compositeness as

X = a0/R + ξc

2 − a0/R − ξc
. (85)

In the present case, ξc is made of two components O(|Rtyp/R|) and O(|l/R|3). Both terms are in
general complex with an unknown relative phase. As a conservative error estimation, we allow ξc to
vary in the region

|ξc| ≤ |Rtyp/R| + |l/R|3. (86)

In other words, the largest magnitude of ξc is determined when two terms are coherently added.
We then evaluate X̃ with Eq. (82) by varying ξc with Eq. (86) being the constraint. Denoting the
maximum (minimum) value of X̃ as X̃u (X̃l), we consider the uncertainty band of X̃ as X̃u < X̃ < X̃l.6

4. Weak-binding relation with CDD pole contribution
In the derivation of the weak-binding relation in the previous sections, we have assumed the con-
vergence of the effective range expansion (ERE) at the eigenenergy Reff ! Rtyp above Eq. (44).
While the ERE is a general expression of the near-threshold amplitude, its convergence region does
not always reach the eigenenergy. In this section, we extend the weak-binding relation to the case
where the ERE does not work well. For simplicity, here we consider the stable bound state. The
generalization to the unstable quasibound state is straightforward, as in Sect. 3.

The validity of the ERE is related to the magnitude of Reff in Eq. (43). When Reff is large, the
convergence of the expansion is limited to the small energy region. The most drastic case occurs
when the CDD (Castillejo–Dalitz–Dyson) pole lies near the threshold energy. Because the CDD pole
is defined as the pole of the inverse scattering amplitude F(E)−1, the ERE converges only in the
region |E| < |Ec|, where Ec is the closest CDD pole to the threshold. When the CDD pole is close
to the eigenenergy, |Eh| ∼ |Ec|, the description by the ERE is not appropriate at the eigenenergy,
and then we cannot use the weak-binding relation [14]. The effect of the CDD pole is discussed in
relation to near-threshold states and the compositeness in Refs. [24,25].

5 With this inequality, we can also show that the difference between X̃ and that in Ref. [32] is smaller than
U/2.

6 We note that X̃u/l is not always given by ξc with the inequality (86) being saturated. For instance, if
|a0/R| < |Rtyp/R|+ |l/R|3, X̃l = 0 is given by ξc = −a0/R, whose magnitude is smaller than |Rtyp/R|+ |l/R|3.
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We calculate the compositeness using extended relations with     ,    ,      .
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This small deviation means that the ERE converges well  
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In the I = 0 scattering amplitude in the diagonal         channel        , 
the CDD pole does not appear in the         threshold energy region.
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The CDD pole contribution to 

In the        amplitude, the CDD pole appears at E = 1434 MeV. 
The ERE description of the       amplitude around its threshold 
 will not reach the        threshold.
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            :      composite dominance⇤(1405) K̄N

• We extend the weak-binding relation to quasi-bound states and  we propose 
an interpretation of complex X introducing real quantities     and    .X̃ U

Y. Kamiya and T. Hyodo, Phys. Rev. C. 93.035203 

Y. Kamiya and T. Hyodo, PTEP 023D02 (2017). 

• Using the Pade approximant, we take into account the contribution 
       of the near-threshold CDD pole and derive the extended weak-binding relation.

• We apply the method to hadrons and discuss the internal structures.

• We show that the CDD pole contribution to the             in the        channel is 
       small with the extended weak-binding relation.
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