Determination of **confinement-deconfinement transition** by **Roberge-Weiss periodicity**

Kouji Kashiwa

Collaborator: Akira Ohnishi

- <u>K.K.</u>, and A. Ohnishi, Phys. Lett. B750 (2015) 282
- <u>K.K.</u>, and A. Ohnishi, Phys. Rev D. 93 (2016) 116002
- K.K., and A. Ohnishi, arXiv:1701.04953

Purpose of this study

To determine

the confinement-deconfinement transition

in the system with dynamical quarks

Heavy quark-mass limit

Polyakov-loop describes the confinement-deconfinement transition

The \mathbb{Z}_3 symmetry relates with the deconfinement transition via the free-energy

We can well determine the deconfinement temperature

Finite quark-mass case

Polyakov-loop is **no longer** the order-parameter !

Schematic QCD phase diagram

Important point

Finite quark-mass case :

Polyakov-loop is **no longer** the order-parameter !

Important point Finite quark-mass case : Polyakov-loop is **no longer** the order-parameter !

Ordinary phase transition

Spontaneous symmetry breaking

Phase transition described by the topological order

X. G. Wen, Int. J. Mod. Phys. B4 (1990) 239.

Ground-state degeneracy

Question

How to see the topological order at T = 0?

Without fractional charge : Commutable

With fractional charge : Non-commutable \rightarrow Ground-state degeneracy

We wish to **extend** it to **finite temperature QCD**!

However, direct extension of the ground-state degeneracy is difficult...

We consider that the **imaginary chemical potential** is

an probe to determine the deconfinement transition

We wish to **extend** it to **finite temperature QCD**!

However, direct extension of the ground-state degeneracy is difficult...

We consider that the **imaginary chemical potential** is

an probe to determine the deconfinement transition

- There is no sign problem
- \Rightarrow This region has all information of the region with finite μ_R
- There are topological differences between the low and high T regions
- We can consider similar special operations

(Today, I do not explain this point)

Phase diagram at finite imaginary chemical potential

A. Roberge and N. Weiss, Nucl. Phys. B275 (1986) 734

Important point

A. Roberge and N. Weiss, Nucl. Phys. B275 (1986) 734

Roberge-Weiss periodicity

Special π/N_c periodicity along θ -direction

It appears at low and high T

Important point

A. Roberge and N. Weiss, <u>Nucl. Phys. B275 (1986) 734</u>

Roberge-Weiss periodicity

Special π/N_c periodicity along θ -direction It appears at low and high T

Roberge-Weiss transition

First-order transition along T-direction

It is characterized by the gap of the quark number density

Dimensionless imaginary chemical potential

Question

How to use these properties to determine the deconfinement transition ?

K.K., A. Ohnishi, Phys. Lett. B750 (2015) 282.

It is natural to consider the **free-energy** since we are interested in the **thermodynamic system**

<u>K.K.</u>, A. Ohnishi, Phys. Lett. B750 (2015) 282.

It is natural to consider the **free-energy** since we are interested in the **thermodynamic system**

However …

The topological order is usually difficult to discuss from thermodynamics (Bulk thermodynamics is insensitive to the topological change)

But

We can discuss topological structures at finite θ (The imaginary chemical potential acts as the extra-dimension)

Dimensionless imaginary chemical potential

Confined phase : There is no non-trivial degeneracy

Confined phase : There is no non-trivial degeneracy Deconfined phase : There is the non-trivial degeneracy!

Qualitative differences are already known in A. Roberge and N. Weiss, Nucl. Phys. B275 (1986) 734

This difference relates to appearance of the quark-gluon dynamics

Dominant degree of freedom : Hadrons \rightarrow Quarks

Three lines wind around the torus

K.K., A. Ohnishi, Phys. Rev D. 93 (2016) 116002

Based on the topological difference, we can construct the **quantum order-parameter**

This quantity basically counts the number of gap in the quark number density along θ -axis Important point

Dimensionless imaginary chemical potential

We can well determine the deconfinement transition

Temperature

Result 2 : Estimation of deconfinement transition temperature

Result 2 : Estimation of deconfinement transition temperature

Question

Why the $\theta = \pi k / N_c$ can detect the topological differences?

Dimensionless imaginary chemical potential

The topological order can be clarify from thermodynamics (at edges)

S. Kempkes, A. Quelle, and C. M. Smith, Scientific Reports 6 (2016)

Example : Kitaev chain model

The topological order can be clarify from thermodynamics (at edges)

S. Kempkes, A. Quelle, and C. M. Smith, Scientific Reports 6 (2016)

Possible analogy

We treat the **imaginary chemical potential** as the extra-dimension (parameter) and thus the $\theta = \pi k/N_c$ points acts as edges of the extended system

Therefore, thermodynamics (gaps in the quark number density) can describe the deconfinement phase transition

Dimensionless imaginary chemical potential

<u>K.K.</u>, A. Ohnishi, arXiv:1701.04953

What happen at finite **real chemical potential**?

In our determination, we should consider

the complex chemical potential

and thus it is very difficult to discuss it

In this study, we employ **Polyakov-loop extended Nambu—Jona-Lasinio** model

PNJL Lagrangian density

$$\mathcal{L} = \bar{q}(\mathcal{D} + m_0) - G[(\bar{q}q)^2 + (\bar{q}i\gamma_5\vec{\tau}q)^2] + \mathcal{V}_g(\Phi,\bar{\Phi})$$

(Good point)

It can describe the chiral phase transition and approximately treat the deconfinement transition via the Polyakov-loop

It can reproduce the RW periodicity and transition

(Bad point)

Unfortunately, this model still has the model sign problem at finite real chemical potential

So, we consider the isospin chemical potential

Sign problem free

 $\tau_2 \gamma_5 D \gamma_5 \tau_2 = D^{\dagger} \implies \det(D) \ge 0$

Orbifold equivalence

Outside of the pion condensed region, the phase diagram at finite real μ and the phase diagram at finite isospin μ are identical to each other in the large N_c limit

Phase diagram from PNJL model

How to investigate the deconfinement transition at finite real chemical potential?

We need better ways to handle the **sign problem**

How to investigate the deconfinement transition at finite real chemical potential?

We need better ways to handle the sign problem

Lefschetz-thimble path-integral method ?

Complex Langevin method ?

How to investigate the deconfinement transition at finite real chemical potential?

We need better ways to handle the sign problem

- Lefschetz-thimble path-integral method ?
- Complex Langevin method ?
- Path optimization method !

Yuto Mori, <u>K.K.</u>, Akira Ohnishi, in preparation

Unfortunately, there is no talk about it \cdots

If you have interesting on it, please check our forthcoming paper We investigate the deconfinement transition from **topological viewpoints**

1. To discuss the deconfinement transition at finite temperature, we use the **nontrivial free-energy degeneracy**

2. We determine the **new order-parameter** of deconfinement transition

$$\Psi = \left[\oint_{0}^{2\pi} \left\{ \operatorname{Im}\left(\frac{d\tilde{n}_{q}}{d\theta} \Big|_{T} \right) \right\} \, d\theta \right]$$

3. The **density-dependence** of the deconfinement transition is shown by introducing the isospin chemical potential to the PNJL model

What happen in the spatial topology ?

In discussions of the topological order, spatial topology is important

1. Spatial Polyakov-loop with the spatial imaginary chemical potential

2. Entanglement entropy

3. Ulmann phase

It is a extended quantity of the Berry phase to quantum mixed states

In these calculations, we need heavy numerical computations