# $\begin{tabular}{l} \Lambda cN interaction from \\ \mbox{Iattice QCD and } \Lambda c nuclei \\ \end{tabular}$

#### Takaya Miyamoto



#### (Yukawa Institute for Theoretical Physics, Kyoto University) for HAL QCD Collaboration

| Hadron to Atomic Nuclei | S. Aoki, T. Aoyama, K. Sasaki, | (YITP Kyoto Univ.) |  |
|-------------------------|--------------------------------|--------------------|--|
| VCaff.+0ba.c            | D. Kawai                       |                    |  |
|                         | T. Doi, T.M. Doi, T. Hatsuda,  | (RIKEN Nishina)    |  |
|                         | T. Iritani                     |                    |  |
|                         | T. Inoue                       | (Nihon Univ.)      |  |
|                         | N. Ishii, Y. Ikeda, K. Murano  | (RCNP Osaka Univ.) |  |
|                         | H. Nemura                      |                    |  |
|                         | S. Gongyo                      | (Univ. of Tours)   |  |
| from Lattice QCD        | F. Etminan                     | (Univ. of Birjand) |  |

# Introduction



#### Various (hyper-) nuclei are found in experiments



- Are there any **charmed hyper-nuclei** ?
- What is the difference between hyper-nuclei and charmed hyper-nuclei?

Strangeness and charm in hadrons and dense matter 2017 @ YITP, 24 May. 2017

Yc-nuclei

# Introduction

There are several theoretical studies for charmed baryon interactions

One-Boson-Exchange (OBE) potential model extended to flavor SU(4)
 + Infinite hard core at short range (~ 0.5 fm)





These studies show that  $\Lambda cN$  interactions are attractive.

Various **Ac-nuclei** were predicted

## Introduction

There are several theoretical studies for charmed baryon interactions

OBEP model based on the heavy quark effective theory

- Coupled-channel ( $\Lambda cN-\Sigma cN-\Sigma c^*N$ ) effects are take into account



The results are sensitive to the phenomenological cutoff parameter,

which encodes the information of the short-range interaction.

This feature indicates that the binding energy is sensitive to the short-range interaction.

#### The determination of interactions from QCD is desirable



#### Outline

(1) Motivation

(2) HAL QCD method

(3) Simulation setup

(4) Numerical results of  $\Lambda cN$  and  $\Lambda N$  interactions

(5) Folding potential analysis for  $\Lambda$  c-nuclei

(6) Summary and conclusion

#### HAL QCD method

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010). S. Aoki *et al*, [HAL QCD Collaboration], PTEP., 01A105 (2012).



- All 2PI contributions are included in potentials
- Potentials are energy-independent until a new channel opens

#### HAL QCD method

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys., 123 (2010). S. Aoki *et al*, [HAL QCD Collaboration], PTEP., 01A105 (2012).

To extract "energy-independent" potentials, N we employ time-dependent HAL QCD method

N. Ishii et al [HAL QCD Coll.], PLB712 (2012) 437.

$$R_{\Lambda_c N}(\vec{r},t) \equiv rac{G_{\Lambda_c N}(\vec{r},t)}{\mathrm{e}^{-m_{\Lambda_c} t} \mathrm{e}^{-m_N t}}$$

Normalized 4pt-correlation function (**R-correlator**)

$$(E_{0} - H_{0}) \psi_{0}(\vec{r}) = \int d^{3}r' U(\vec{r}, \vec{r}\ ') \psi_{0}(\vec{r}\ ')$$

$$(E_{1} - H_{0}) \psi_{1}(\vec{r}) = \int d^{3}r' U(\vec{r}, \vec{r}\ ') \psi_{1}(\vec{r}\ ')$$

$$(E_{2} - H_{0}) \psi_{2}(\vec{r}) = \int d^{3}r' U(\vec{r}, \vec{r}\ ') \psi_{2}(\vec{r}\ ')$$

All equations are combined into one t-dep. eq.

$$\left(-\frac{\partial}{\partial t} + \left[\frac{1+\delta^2}{8\mu}\right]\frac{\partial^2}{\partial t^2} - H_0\right)R_{\Lambda_c N}(\vec{r}, t) = \int d^3r' U_{\Lambda_c N}(\vec{r}, \vec{r'})R_{\Lambda_c N}(\vec{r'}, t) \qquad \mu \equiv \frac{m_{\Lambda_c} m_N}{m_{\Lambda_c} + m_N} \quad \delta \equiv \frac{m_{\Lambda_c} - m_N}{m_{\Lambda_c} + m_N}$$

Within the approximation up to O(k<sup>2</sup>)

Non-local potentials —> local potentials

**Derivative (velocity) expansion** 

In the low energy state, LO term of the potentials is significant.

$$U(\vec{r}, \vec{r}') = V(\vec{r}, \vec{\nabla}) \ \delta^3 (\vec{r} - \vec{r}') \quad \text{LO term} \\ V(\vec{r}, \vec{\nabla}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12} + \mathcal{O}(\vec{\nabla})$$

#### Outline

(1) Motivation

(2) HAL QCD method

(3) Simulation setup

(4) Numerical results of  $\Lambda cN$  and  $\Lambda N$  interactions

(5) Folding potential analysis for  $\Lambda$  c-nuclei

(6) Summary and conclusion

#### Lattice QCD setup

#### Nf=2+1 full QCD configurations generated by PACS-CS Coll



0.0907 fm

2.9 fm S.

PACS-CS Collaboration:

S. Aoki, et al., Phys. Rev. D79 (2009) 034503

- Iwasaki gauge action
- O(a) improved Wilson-clover quark action
- a ~ 0.09 fm, L ~ 3 fm (  $32^3 \times 64$  )

m<sub>π</sub> ~ 700, 570, 410 MeV





Ac-N potential = repulsive core + attractive pocket

As m<sub>q</sub> decreasing,

- repulsive core becomes larger
- attractive pocket shifts outward







### Comparison of $\Lambda N$ and $\Lambda c N$ potential ( $m_{\pi} = 570 \text{ MeV}$ )



# Leading order of $\Lambda cN$ potential in velocity expansion $V_{\Lambda_c N}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12}$

These three potentials can be obtained from NBS wave functions in J<sup>P</sup>=0<sup>+</sup> and 1<sup>+</sup>



#### Leading order of $\Lambda cN$ potential in velocity expansion

$$V_{\Lambda_c N}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12}$$

| Mpi ~ 700 MeV | <b></b>                                      |
|---------------|----------------------------------------------|
| Mpi ~ 570 MeV | <del>`````````````````````````````````</del> |
| Mpi ~ 410 MeV | <b></b> *'                                   |



#### Leading order of $\Lambda cN$ potential in velocity expansion

$$V_{\Lambda_c N}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r})(\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r})S_{12}$$

| Mpi ~ 700 MeV | <u> </u>     |
|---------------|--------------|
| Mpi ~ 570 MeV | <del>x</del> |
| Mpi ~ 410 MeV | <b></b> *'   |



#### Comparison of $\Lambda N$ potential and $\Lambda cN$ potential

 $V_{\Lambda_c N}(\vec{r}) = V_0(\vec{r}) + V_{\sigma}(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12}$ 

| Mpi ~ 700 MeV | <b></b>    |
|---------------|------------|
| Mpi ~ 570 MeV |            |
| Mpi ~ 410 MeV | <b></b> *' |



# Spin independent central potential is significant in ΛcN interaction



We use this potential for the investigation of  $\Lambda$  c-nuclei

# **Λc-nuclei**

(Single-) folding potential

$$V_F(oldsymbol{r}) = \int d^3 r' 
ho_A(oldsymbol{r}') V_{\Lambda_c N}(oldsymbol{r} - oldsymbol{r}')$$

density distributions for nuclear matter

$$\rho_A(r) = \rho_0 \left[ 1 + \exp\left(\frac{r - c}{a}\right) \right]^{-1}$$

two-parameter Fermi (FM) form

$$\int d^3r \,\,
ho_A(r) = A$$
 )

Parameters for several stable nuclei







Since the spin dep. force is weak, we use only the spin indep. force for the folding potentials.

| Nucleus                                                               | <sup>12</sup> C          | <sup>28</sup> Si       | <sup>40</sup> Ca       | <sup>58</sup> Ni       | <sup>90</sup> Zr       | <sup>208</sup> Pb      |
|-----------------------------------------------------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| $\rho_0 \text{ (fm}^{-3}\text{)}$<br>c  (fm)<br>$\alpha \text{ (fm)}$ | 0.207<br>2.1545<br>0.425 | 0.175<br>3.15<br>0.475 | 0.169<br>3.60<br>0.523 | 0.172<br>4.094<br>0.54 | 0.165<br>4.90<br>0.515 | 0.150<br>6.80<br>0.515 |
| $\alpha$ (fm)                                                         | 0.425                    | 0.475                  | 0.523                  | 0.54                   | 0.515                  | 0                      |





# Conclusions

• We investigate  $\Lambda cN$  interactions by the HAL QCD method

Our results show that  $\Lambda cN$  interactions are **attractive** 

The feature of  $\Lambda cN$  potentials is **spin-independent** 

The spin-spin force and the tensor force are almost negligible



The analysis of the folding potentials with LQCD potentials shows that <u>Ac could be bound with heavy nuclei</u>.

#### **Prospects:**

- We will investigate  $\Lambda c$  light nuclei by using few/many-body calculation (GEM, AMD, …)
- We will also investigate  $\Sigma$  c-nuclei
- Physical point calculation is the next step