ΛcN interaction from lattice QCD and Λc nuclei

Takaya Miyamoto
(Yukawa Institute for Theoretical Physics, Kyoto University)
for HAL QCD Collaboration

S. Aoki, T. Aoyama, K. Sasaki, D. Kawai
T. Doi, T.M. Doi, T. Hatsuda, T. Iritani
T. Inoue
N. Ishii, Y. Ikeda, K. Murano
H. Nemura
S. Gongyo
F. Etminan

(YITP Kyoto Univ.)
(RIKEN Nishina)
(Nihon Univ.)
(RCNNP Osaka Univ.)
(Univ. of Tours)
(Univ. of Birjand)
Various (hyper-) nuclei are found in experiments.

- Are there any **charmed hyper-nuclei**?
- What is the difference between hyper-nuclei and **charmed hyper-nuclei**?

To discuss possibility of **charmed hyper-nuclei**, the interaction between a charmed baryon and a nucleon is a key.

YcN interactions

Strangeness and charm in hadrons and dense matter 2017 @ YITP, 24 May. 2017
There are several theoretical studies for charmed baryon interactions

- One-Boson-Exchange (OBE) potential model extended to flavor SU(4) + Infinite hard core at short range (~ 0.5 fm)

These studies show that \(\Lambda c\)-N interactions are attractive.

Various \(\Lambda c\)-nuclei were predicted
Introduction

There are several theoretical studies for charmed baryon interactions

- OBEP model based on the heavy quark effective theory
 - Coupled-channel ($\Lambda cN - \Sigma cN - \Sigma c^*N$) effects are taken into account

Channel coupling has important effects for the ΛcN bound states

The possibility of bound ΛcN was claimed

The results are sensitive to the phenomenological cutoff parameter, which encodes the information of the short-range interaction.

This feature indicates that the binding energy is sensitive to the short-range interaction.

The determination of interactions from QCD is desirable

Strangeness and charm in hadrons and dense matter 2017 @ YITP, 24 May. 2017
Introduction

Lattice QCD

Our strategy

HAL QCD method

hadron-hadron potential

- Faithful to QCD S-matrix
- No experimental data are needed
- Extending to charmed baryon is easy
Outline

(1) Motivation

(2) HAL QCD method

(3) Simulation setup

(4) Numerical results of ΛcN and ΛN interactions

(5) Folding potential analysis for Λc-nuclei

(6) Summary and conclusion
HAL QCD method

- Nambu-Bethe-Salpeter (NBS) wave functions

\[
\psi_{\Lambda_c N}^{(W_n)}(\vec{r}) = \sum_{\vec{x}} \langle 0|\Lambda_c(\vec{r} + \vec{x}, t) N(\vec{x}, t)|\Lambda_c N, W_n \rangle e^{-W_n t}
\]

\[
W_n = \sqrt{k_n^2 + m_{\Lambda_c}^2} + \sqrt{k_n^2 + m_N^2}
\]

\[
(k_n^2 + \nabla^2)\psi_{\Lambda_c N}^{(W_n)}(\vec{r}) = 0
\]

\[
\psi_{\Lambda_c N}^{(W_n)}(\vec{r}) \propto \sin \left(\frac{k_n r - l \pi}{2} + \delta_l(k_n) \right)
\]

- At large \(r \)
- Outside interactions

Define the **energy-independent non-local potentials** through the **Schrödinger-type equation**

\[
(E_n - H_0) \psi_{\Lambda_c N}^{(W_n)}(\vec{r}) = \int d^3 \vec{r}' U_{\Lambda_c N}(\vec{r}, \vec{r}') \psi_{\Lambda_c N}^{(W_n)}(\vec{r}')
\]

- Potentials **faithful to S-matrix** by construction
- **All 2PI contributions are included** in potentials
- Potentials are energy-independent until a new channel opens

Strangeness and charm in hadrons and dense matter 2017 @ YITP, 24 May. 2017
HAL QCD method

To extract “energy-independent” potentials, we employ time-dependent HAL QCD method

\[
R_{\Lambda^c N}(\vec{r}, t) = \frac{G_{\Lambda^c N}(\vec{r}, t)}{e^{-m_{\Lambda^c} t} e^{-m_N t}}
\]

Normalized 4pt-correlation function (R-correlator)

\[
(E_0 - H_0) \psi_0(\vec{r}) = \int d^3 r' U(\vec{r}, \vec{r}') \psi_0(\vec{r}')
\]

\[
(E_1 - H_0) \psi_1(\vec{r}) = \int d^3 r' U(\vec{r}, \vec{r}') \psi_1(\vec{r}')
\]

\[
(E_2 - H_0) \psi_2(\vec{r}) = \int d^3 r' U(\vec{r}, \vec{r}') \psi_2(\vec{r}')
\]

All equations are combined into one t-dep. eq.

\[
\left(-\frac{\partial}{\partial t} + \left[1 + \frac{\delta^2}{8\mu}\right] \frac{\partial^2}{\partial t^2} - H_0\right) R_{\Lambda^c N}(\vec{r}, t) = \int d^3 r' U_{\Lambda^c N}(\vec{r}, \vec{r}') R_{\Lambda^c N}(\vec{r}', t)
\]

Within the approximation up to O(k^2)

Non-local potentials \(\rightarrow\) local potentials

Derivative (velocity) expansion

\[
U(\vec{r}, \vec{r}') = V(\vec{r}, \vec{\nabla}) \delta^3 (\vec{r} - \vec{r}')
\]

\[
V(\vec{r}, \vec{\nabla}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12} + O(\vec{\nabla})
\]

In the low energy state, LO term of the potentials is significant.

Outline

(1) Motivation

(2) HAL QCD method

(3) Simulation setup

(4) Numerical results of ΛcN and ΛN interactions

(5) Folding potential analysis for Λc-nuclei

(6) Summary and conclusion
Lattice QCD setup

Nf=2+1 full QCD configurations generated by PACS-CS Coll

PACS-CS Collaboration:

- Iwasaki gauge action
- O(a) improved Wilson-clover quark action
- $a \sim 0.09$ fm, $L \sim 3$ fm ($32^3 \times 64$)

$m_\pi \sim 700, 570, 410$ MeV

For charm quark, we use
Relativistic Heavy Quark (RHQ) action
to remove the leading $O((ma)^n)$ discretization error

For more details, see,
Namekawa, et al.,
Phys. Rev. D84 (2011) 074505

BG/Q @ KEK

Strangeness and charm in hadrons and dense matter 2017 @ YITP, 24 May. 2017
S-wave Λ-c-N effective central potentials

Λ-c-N potential = repulsive core + attractive pocket

As m_Ω decreasing,

- repulsive core becomes larger
- attractive pocket shifts outward

Strangeness and charm in hadrons and dense matter 2017 @ YITP, 24 May. 2017
S-wave $\Lambda (c)\cdot N$

effective central potentials

$J^P=0^+$

$J^P=1^+$

ΛN potentials

$\Lambda \pi \sim 700$ MeV
$\Lambda \pi \sim 570$ MeV
$\Lambda \pi \sim 410$ MeV
Comparison of ΛN and ΛcN potential
($m_\pi = 570$ MeV)

Both attractive pocket and repulsive core of ΛcN potentials are smaller than those of ΛN potentials.
Comparison of ΛN and ΛcN potential
($m_\pi = 570$ MeV)

Phase shifts of $\Lambda (c)N$ scattering

The net attraction of ΛcN is weaker than ΛN

Scattering length:

$$a_{\Lambda N} = 0.56(30) \text{ fm}$$
$$a_{\Lambda cN} = 0.18(12) \text{ fm}$$

$$a_{\Lambda N} = 0.87(45) \text{ fm}$$
$$a_{\Lambda cN} = 0.21(15) \text{ fm}$$
Comparison of ΛN and ΛcN potential
$(m_\pi = 570$ MeV$)$

We observed that the scattering lengths of ΛcN ($J^P=0^+$) state and ΛcN ($J^P=1^+$) state are approximately equal.

To investigate the origin of this observation, we decompose the effective central potentials into spin dep. term and spin indep. term.

Scattering length:

$\quad a_{\Lambda N} = 0.56(30)$ fm
$\quad a_{\Lambda cN} = 0.18(12)$ fm

$\quad a_{\Lambda N} = 0.87(45)$ fm
$\quad a_{\Lambda cN} = 0.21(15)$ fm
Leading order of ΛcN potential in velocity expansion

$$V_{\Lambda cN}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12}$$

These three potentials can be obtained from NBS wave functions in $J^P=0^+$ and 1^+

We found that both spin-spin force and tensor force are weak
Leading order of ΛcN potential in velocity expansion

$$V_{\Lambda cN}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12}$$

![Graphs showing potential components](image)

- $V_0(\vec{r})$
- $V_\sigma(\vec{r})$
- $V_T(\vec{r})$

$M_{\pi} \sim 700$ MeV
$M_{\pi} \sim 570$ MeV
$M_{\pi} \sim 410$ MeV

Weak spin-spin force of ΛcN

\rightarrow It could be explained from the HQ spin symmetry

Strangeness and charm in hadrons and dense matter 2017 @ YITP, 24 May. 2017
Leading order of ΛcN potential in velocity expansion

\[
V_{\Lambda cN}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12}
\]

- $V_0(\vec{r})$
- $V_\sigma(\vec{r})$
- $V_T(\vec{r})$

- Σ^*N
- Σc^*N
- ΣcN
- ΛcN

Weak tensor force of ΛcN

\rightarrow It could be explained from large difference of $\Lambda cN - \Sigma cN$ threshold
Comparison of ΛN potential and ΛcN potential

$$V_{\Lambda cN}(\vec{r}) = V_0(\vec{r}) + V_\sigma(\vec{r}) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(\vec{r}) S_{12}$$

Spin independent central potential is significant in ΛcN interaction

We use this potential for the investigation of Λc-nuclei
Λc-nuclei

(Single-) folding potential

\[V_F(r) = \int d^3r' \rho_A(r') V_{\Lambda c N}(r - r') \]

density distributions for nuclear matter

\[\rho_A(r) = \rho_0 \left[1 + \exp \left(\frac{r - c}{a} \right) \right]^{-1} \]

two-parameter Fermi (FM) form

\[\left(\int d^3r \rho_A(r) = A \right) \]

- Parameters for several stable nuclei

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>12C</th>
<th>28Si</th>
<th>40Ca</th>
<th>58Ni</th>
<th>90Zr</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_0 (fm$^{-3}$)</td>
<td>0.207</td>
<td>0.175</td>
<td>0.169</td>
<td>0.172</td>
<td>0.165</td>
<td>0.150</td>
</tr>
<tr>
<td>c (fm)</td>
<td>2.1545</td>
<td>3.15</td>
<td>3.60</td>
<td>4.094</td>
<td>4.90</td>
<td>6.80</td>
</tr>
<tr>
<td>α (fm)</td>
<td>0.425</td>
<td>0.475</td>
<td>0.523</td>
<td>0.54</td>
<td>0.515</td>
<td>0.515</td>
</tr>
</tbody>
</table>

Since the spin dep. force is weak, we use only the spin indep. force for the folding potentials.

Ref: M. El-Azab Farid a, M.A. Hassanain, Nuclear Physics A 678 (2000) 39–75
Λc-nuclei

(Single-) folding potential

\[V_F(r) = \int d^3 r' \rho_A(r') V_{ΛcN}(r - r') \]

HAL QCD potential (spin-indep. force)

- Binding energies

\[V_F(r) \]

(Λc-\(^{208}\)Pb)

\[M_{\pi} \sim 700 \text{ MeV} \]
\[M_{\pi} \sim 570 \text{ MeV} \]
\[M_{\pi} \sim 410 \text{ MeV} \]

w/o Coulomb force
Λc-nuclei

(Single-) folding potential

\[V_F(r) = \int d^3 r' \rho_A(r') V_{ΛcN}(r - r') \]

HAL QCD potential (spin-indep. force)

Binding energies increase as pion mass approaches the physical point

- Binding energies

\[V_{F(r)} \text{[MeV]} \]

\[r \text{[fm]} \]

\[(Λc-^{208}\text{Pb}) \]

\[\text{Mpi} \sim 700 \text{ MeV} \]
\[\text{Mpi} \sim 570 \text{ MeV} \]
\[\text{Mpi} \sim 410 \text{ MeV} \]

w/o Coulomb force
Conclusions

- We investigate ΛcN interactions by the HAL QCD method

Our results show that ΛcN interactions are attractive

The feature of ΛcN potentials is spin-independent. The spin-spin force and the tensor force are almost negligible

The analysis of the folding potentials with LQCD potentials shows that Λc could be bound with heavy nuclei.

Prospects:
- We will investigate Λc - light nuclei by using few/many-body calculation (GEM, AMD, ⋯)
- We will also investigate Σc-nuclei
- Physical point calculation is the next step