Hidden-charm Pentaquarks in Constituent Quark Models

Makoto Oka

Tokyo Institute of Technology
and

Advance Science Research Center, JAEA

Exotic Hadrons

\# Hadron is a color-singlet composite of quarks and gluons.
q-qbar (meson): $3 \otimes \overline{3}=1 \oplus 8$
q-q-q (baryon) : $3 \otimes 3 \otimes 3=1 \oplus 8 \oplus 8 \oplus 10$
\# and MORE...
g-g (glueball) : $8 \otimes 8=1 \oplus 8 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27$
q-qbar-g (hybrid): $3 \otimes \overline{3} \otimes 8=1 \oplus(3 \times 8) \oplus 10 \oplus \overline{10} \oplus 27$ $q^{2}-q b a r^{2}$ (tetra-quark):

$$
3 \otimes 3 \otimes \overline{3} \otimes \overline{3}=(2 \times 1) \oplus(4 \times 8) \oplus 10 \oplus \overline{10} \oplus 27
$$

\mathbf{q}^{4}-qbar (penta-quark): $\quad 3^{4} \otimes \overline{3}=(3 \times 1) \oplus \ldots$
$\mathbf{q}^{\mathbf{6}}($ di-baryon $): \quad 3^{6}=(5 \times 1) \oplus \ldots$

Multi-Quark (MQ) dynamics

\# "Extrapolation" to MQ hadrons is not trivial.
\# "Color Confinement" is a key in the MQ dynamics. Exotic Hadrons are "Colorful" ! (Lipkin@YKIS06) $\left(q q^{b a r}\right)_{8}$ or $(q q)_{6}$ are allowed only in the MQ hadrons.

Novel Dynamics

What we learn from MQ hadrons?

\# CONFINEMENT of Quarks
What is the Mechanism and Dynamics of quark confinement?
Modeling of confinement
Bag model v.s. Potential model
\# COUPLINGS of Resonances to Hadronic states How decay channels and widths are determined?

Mechanisms of the strong decays
Possibility of narrow resonances

Bag Model

\# MIT Bag Model:
Quarks (and gluons) are confined (and, in total, color-singlet) in a "Bag". The bag is self-sustained by the "bag energy".
\# Two conditions at the bag surface

- No outflow of color from the surface $\left.\quad n \cdot j_{c}^{\alpha}\right|_{\text {surface }}=0$

$$
j_{c}^{\alpha \mu}=\bar{q} \gamma^{\mu} \frac{\lambda^{\alpha}}{2} q+(\text { gluon color current })
$$

- Pressure balance of two phases $\quad P_{\text {in }}=P_{\text {out }}$

$$
\begin{aligned}
P_{\mathrm{in}} & =(\text { pressure by quarks and gluons }) \\
P_{\mathrm{out}} & =(\text { pressure by the bag energy }) \\
E_{\mathrm{bag}} & =B V
\end{aligned}
$$

Bag Model

\# Energy of the hadron containing massless quarks

$$
\begin{aligned}
E(R) & =B \frac{4 \pi R^{3}}{3}+\sum_{i} E_{i}=\frac{4 \pi B R^{3}}{3}+\sum_{i} \frac{\omega_{i}}{R} \\
\frac{d E(R)}{d R} & =B 4 \pi R^{2}-\frac{\sum_{i} \omega_{i}}{R^{2}}=0 \longrightarrow R(n)=\left(\frac{n \omega}{4 \pi B}\right)^{1 / 4} \\
E_{n} & =E(R(n))=(\text { const }) \times B^{1 / 4} n^{3 / 4}
\end{aligned}
$$

\# E_{n} is a convex function of n, that is $E_{2 n}<2 E_{n}$. If there is no other interaction, the binding energy is larger as the size of the system gets larger.
\# The energy scale is $B^{1 / 4} \sim 200 \mathrm{MeV}$. It is not surprising to have a bound state of binding energy $\mathbf{\sim 1 0 0 - 2 0 0} \mathbf{~ M e V}$.

Potential Model

\# Two-body confinement forces

- Force without color-cluster saturation is no good.

$$
V=\sum_{i<j} v\left(r_{i j}\right) \longrightarrow\langle V\rangle \sim \frac{n(n-1)}{2}\langle v\rangle \sim \text { gravity }
$$

- Spin-independent color-saturated force is linear in \boldsymbol{n}.

$$
V=-\sum_{i<j}\left(\lambda_{i}^{c} \cdot \lambda_{j}^{c}\right) v\left(r_{i j}\right) \longrightarrow\langle V\rangle \sim \frac{8}{3} n\langle v\rangle
$$

- \boldsymbol{R} determined by the energy minimum

$$
\begin{aligned}
& E(R)=\langle K+V\rangle \sim \frac{n-1}{R^{2}} \bar{K}+n \bar{v} R \\
& E_{n}=(\text { const }) n^{2 / 3}(n-1)^{1 / 3} \bar{v}^{2 / 3} \bar{K}^{1 / 3}
\end{aligned}
$$

Bag model v.s. Potential model

\# n dependences

Exotic MQ states

\# To look for "stable" (or narrow) multi-quark states, we consider "colorful" configurations.
\# Hidden Charm Pentaquarks are cases in which the color-octet "baryon" might be stabilized with the help of color-octet heavy "quarkonium".

Heavy Quark

\# QCD Lagrangian is flavor independent, but the coupling constant runs.

\# Light quarks are

Charmonium

\# The quark model gives very good guidelines to classify and interpret the hadron spectrum.

The charmonium spectrum is a textbook example.
"hydrogen atom" in QCD
\# The Hamiltonian with a
Linear + Coulomb potential

$$
V(r)=-\frac{e}{r}+\sigma r
$$

E. Eichten, et al., PRL 34 (1975) 369 gives a good fit to the $1 \mathrm{~S}, 1 \mathrm{P}, \mathbf{2 S}, \ldots$ charmonium (and bottomonium) states.
G.S. Bali, Phys. Rept. 343 (2001) 1

Charmonium

Liuming Liu, et al. (Hadron Spectrum Collaboration)

 JHEP 07, 126 (2012)

HQ Exotic Hadrons

\# X(3872) found in 2003 by Belle (KEK)
\rightarrow not reproduced by lattice QCD using only q-quar operators.
\# $\mathbf{Z}(3900), \mathbf{Z}(4430)$ etc. : charged hidden charm states

X(3872)
Belle

$\mathrm{Z}_{\mathrm{c}}{ }^{+}(4430)$
Belle

$\mathrm{Z}_{\mathrm{c}}{ }^{+}(3900)$ BES III

PRL 110 (2013) 252001

PRL 100 (2008) 142001
PRL 91 (2003) 262001

Hidden Charm Pentaquark P_{c}

$\# \quad P_{\mathrm{c}} \rightarrow \mathrm{J} / \psi+p$ (ccūud)
LHCb (PRL 115 (2015) 07201) found two penta-quark states with hidden cē.

Hidden Charm Pentaquark P_{c}

Constituent quark model analyses
\# Study of qqq cbar c five quark system with three kinds of quark-quark hyperfine interaction, S.G. Yuan, K.W. Wei, J. He, H.S. Xu, and B.S. Zou, Eur. Phys. J. A 48 (2012) 61
\# The hidden charm pentaquarks are the hidden color-octet uud baryons?
Sachiko Takeuchi, Makoto Takizawa, Physics Letters B 764 (2017) 254-259
\# Flavor-singlet charm pentaquark Yoya Irie, Makoto Oka and Shigehiro Yasui, in preparation
\# Hidden-charm pentaquark with strangeness Sachiko Takeuchi, Makoto Oka in preparation

Hidden Charm Pentaquark \boldsymbol{P}_{c}

\# color 1 cē
$56=(8,1 / 2)+(10,3 / 2)$
$\Delta_{\mathrm{CM}} \equiv\left\langle-\sum_{i<j}\left(\vec{\lambda}_{i} \cdot \vec{\lambda}_{j}\right)\left(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)\right\rangle$
$(8,1 / 2) \quad \Delta_{\text {См }}=-8 \quad$ cē uud $($ udd $)=\eta_{c} / J / \psi+p$
$(10,3 / 2) \quad \Delta_{\text {CM }}=8$
\# color 8 cē
$70=(1,1 / 2)+(8,1 / 2)+(8,3 / 2)+(10,1 / 2)$
$(1,1 / 2) \quad \Delta_{C M}=-14 \quad P_{c s}=c \bar{c}$ uds $=\eta_{8} / \Psi_{8}+\Lambda_{8}($ singlet $)$
$(8,1 / 2) \quad \Delta_{C M}=-2 \quad \eta_{8} / \psi_{8}+\mathbf{N}_{8}$
The most favored state with cē by CMI may not be $J / \psi+p$.
\# Pcs family ($\mathrm{I}=0, \mathrm{Str}=\mathbf{- 1}$)
$(\mathrm{c} \overline{\mathrm{c}})_{8, \mathrm{~J}=1}+(\mathrm{uds})_{8, \mathrm{~J}=1 / 2} \mathrm{~J}^{\pi}=1 / 2^{-}, 3 / 2^{-}$
(c⿹\zh26龴) $)_{8, \mathrm{~J}=0}+(\mathbf{u d s})_{8, \mathrm{~J}=1 / 2} \quad \mathrm{~J}^{\pi}=1 / \mathbf{2}^{-}$

Flavor Singlet Pentaquark $P_{c s}$

\# Potential Quark Model

Linear confinement with color Casimir dependence

$$
V_{\mathrm{conf}}=\sum_{i<j}-\sigma\left(\lambda_{i} \cdot \lambda_{j}\right) r_{i j}
$$

Coulomb electric interaction from one-gluon-exchange

$$
V_{\mathrm{Coulomb}}=\sum_{i<j} \frac{\alpha_{s}}{4 r_{i j}}\left(\lambda_{i} \cdot \lambda_{j}\right)
$$

Color magnetic spin-spin interaction from OGE

$$
V_{\mathrm{CMI}}=-\frac{\alpha_{s}}{4} \sum_{i<j} \frac{\pi}{m_{i} m_{j}}\left(\lambda_{i} \cdot \lambda_{j}\right)\left[1+\frac{2}{3} \sigma_{i} \cdot \sigma_{j}\right] \delta\left(r_{i j}\right)
$$

Non-relativistic quarks with

$$
m(u, d)=313 \mathrm{MeV} \quad m(s)=522 \mathrm{MeV}
$$

Instanton Induced Interaction

Instanton: Classical solution of 4-dim. Euclidian QCD

Light quarks couple with instanton

Effective point-like interaction of light quarks (KMT)

3-body interaction

$$
V_{\text {III } 3}=V_{0} \frac{189}{40} \sum_{(i j k)}\left(\mathcal{A}_{3}^{f}\left[1-\frac{1}{7}\left(\sigma_{i} \cdot \sigma_{j}+\sigma_{j} \cdot \sigma_{k}+\sigma_{k} \cdot \sigma_{i}\right)\right] \delta\left(r_{i j}\right) \delta\left(r_{j} k\right)\right.
$$

2-body interaction

$$
V_{\mathrm{III} 2}=U_{0}^{(2)} \frac{15}{8} \sum_{i<j} \mathcal{A}_{2}^{f} \frac{1}{m_{i} m_{j}}\left[1-\frac{1}{5} \sigma_{i} \cdot \sigma_{j}\right] \delta\left(r_{i j}\right)
$$

The 3-body III is repulsive for flavor singlet u-d-s systems

2-body III

Flavor Singlet Pentaquark $P_{c s}$

\# Pcs family ($\mathbf{I}=\mathbf{0}$, Str= $=\mathbf{1}$)

$\left(I, J^{P}\right)$	octet type (8)					
		component	color	spin	flavor	isospin
$\left(0,1 / 2^{-}\right)$	$\mathbf{8}$	$c \bar{c}$	$\mathbf{8}$	0	-	-
	$u d s$	$\mathbf{8}$	$1 / 2$	$\mathbf{1}$	0	
$\left(0,1 / 2^{-}\right)$	$\mathbf{8}^{\prime}$	$c \bar{c}$	$\mathbf{8}$	1	-	-
		$u d s$	$\mathbf{8}$	$1 / 2$	$\mathbf{1}$	0
$\left(0,3 / 2^{-}\right)$	$\mathbf{8}^{*}$	$c \bar{c}$	$\mathbf{8}$	1	-	-
	$u d s$	$\mathbf{8}$	$1 / 2$	$\mathbf{1}$	0	

color : 8

color : 8
flavor : 1

Energy Spectrum (Preliminary)

Y. Irie, S. Yasui. M. Oka

A variational method is used for a qualitative evaluation of the spectrum.

The lowest energy state is $\mathbf{8}^{\mathbf{\prime}}$.

$$
\left(1 / 2^{-}, S_{c \bar{c}}=1\right)
$$

The instanton induced interaction lowers the masses by about 80 MeV .

Two $1 / 2^{-}$states mix by the CMI.

Energy Spectrum (Preliminary)

Y. Irie, S. Yasui. M. Oka

A variational method is used for a qualitative evaluation of the spectrum.

The lowest energy state is $\mathbf{8}^{\mathbf{8}}$.

$$
\left(1 / 2^{-}, S_{c \bar{c}}=1\right)
$$

The instanton induced interaction lowers the masses by about 80 MeV .

Two $1 / 2^{-}$states mix by the CMI.

Decays

Y. Irie, S. Yasui. M. Oka

$$
\eta_{c}(J / \psi)+\Lambda
$$

Flavor SU(3) : suppressed

$$
\begin{aligned}
& D_{s}+\Lambda_{c} \\
& \quad \text { (barely) allowed } \\
& \quad 8^{*}: \text { D-wave decay }
\end{aligned}
$$

$$
D_{s}^{*}+\Lambda_{c}
$$

8*: S-wave decay
With Instantons
\rightarrow forbidden

Production

$$
\begin{gathered}
P c(4380), P c(4450) \\
\Lambda_{b}^{0}(b u d) \rightarrow P c^{+}+K^{-} \\
P c^{+} \rightarrow J / \Psi+p
\end{gathered}
$$

R. Aaij et al. (LHCb Collaboration)

Phys. Rev. Lett. 115, 072001 - Published 12 August 2015

$$
\Lambda_{b}^{0}(b u d) \rightarrow(c \bar{c} u d s)+\frac{\pi^{0}}{\text { no charge }}
$$

$$
\Xi_{b}^{-}(b d s) \rightarrow(c \bar{c} u d s)+K^{-}
$$

minus charge!

Conclusion+

\# Exotic (MQ) hadrons can be keys for understanding the mechanisms of

CONFINEMENT - novel color configurations HADRON COUPLINGS/ INTERACTIONS
\# Pentaquarks
Hidden-charm pentaquarks
$\mathbf{P}_{\mathbf{c}}=\mathbf{c} \mathbf{c} q q q$ (flavor octet),
$P_{c s}=c \bar{c} u d s$ (flavor singlet)
\# Other possibilities
$P_{c \bar{s}}=\mathbf{c s} q q q$ (Diakonov)
\# Hexaquarks (aka Dibaryon) $\mathrm{H}=\mathbf{q}^{6}=$ (uuddss) (flavor singlet)
$\mathrm{H}_{\mathrm{c}}=($ cuudds $)=(\mathrm{cud}$ uds) (flavor 3bar)

Contributions of III

Contributions of CMI

$$
V_{\mathrm{CMI}}=-\frac{\alpha_{s}}{4} \sum_{i<j} \frac{\pi}{m_{i} m_{j}}\left(\lambda_{i} \cdot \lambda_{j}\right)\left[1+\frac{2}{3} \sigma_{i} \cdot \sigma_{j}\right] \delta\left(r_{i j}\right)
$$

The CMI between the HQ and LQ modifies the masses.

