Hidden-charm Pentaquarks in Constituent Quark Models

Makoto Oka

Tokyo Institute of Technology and

Advance Science Research Center, JAEA

Exotic Hadrons

Hadron is a color-singlet composite of quarks and gluons.

q-qbar (meson): $3 \otimes \overline{3} = 1 \oplus 8$

q-q-q (baryon): $3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$

and MORE ...

g-g (glueball) : $8 \otimes 8 = 1 \oplus 8 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27$

q-qbar-g (hybrid): $3 \otimes \overline{3} \otimes 8 = 1 \oplus (3 \times 8) \oplus 10 \oplus \overline{10} \oplus 27$

q²-qbar² (tetra-quark):

$$3 \otimes 3 \otimes \overline{3} \otimes \overline{3} = (2 \times 1) \oplus (4 \times 8) \oplus 10 \oplus \overline{10} \oplus 27$$

q⁴-qbar (penta-quark): $3^4 \otimes \overline{3} = (3 \times 1) \oplus \dots$

$$q^6$$
 (di-baryon): $3^6 = (5 \times 1) \oplus \dots$

Multi-Quark (MQ) dynamics

- **"Extrapolation" to MQ hadrons is not trivial.**
- **#** "Color Confinement" is a key in the MQ dynamics.

 Exotic Hadrons are "Colorful"! (Lipkin@YKIS06)

 (qq^{bar})₈ or (qq)₆ are allowed only in the MQ hadrons.

Novel Dynamics

What we learn from MQ hadrons?

- CONFINEMENT of Quarks
 What is the Mechanism and Dynamics of quark confinement?
 Modeling of confinement
 Bag model v.s. Potential model
- # COUPLINGS of Resonances to Hadronic states
 How decay channels and widths are determined?
 Mechanisms of the strong decays
 Possibility of narrow resonances

Bag Model

- **MIT Bag Model:**Quarks (and gluons) are confined (and, in total, color-singlet) in a "Bag". The bag is self-sustained by the "bag energy".
- **Two conditions** at the bag surface
 - No outflow of color from the surface $n \cdot j_c^{\alpha}|_{\mathrm{surface}} = 0$ $j_c^{\alpha\mu} = \bar{q}\gamma^{\mu}\frac{\lambda^{\alpha}}{2}q + (\mathrm{gluon\ color\ current})$
 - Pressure balance of two phases $P_{\rm in} = P_{\rm out}$ $P_{\rm in} = ({\rm pressure~by~quarks~and~gluons})$ $P_{\rm out} = ({\rm pressure~by~the~bag~energy})$ $E_{\rm bag} = BV$

Bag Model

♯ Energy of the hadron containing massless quarks

$$E(R) = B \frac{4\pi R^3}{3} + \sum_{i} E_i = \frac{4\pi B R^3}{3} + \sum_{i} \frac{\omega_i}{R}$$

$$\frac{dE(R)}{dR} = B4\pi R^2 - \frac{\sum_{i} \omega_i}{R^2} = 0 \longrightarrow R(n) = \left(\frac{n\omega}{4\pi B}\right)^{1/4}$$

$$E_n = E(R(n)) = (\text{const}) \times B^{1/4} n^{3/4}$$

- **#** The energy scale is $B^{1/4} \sim 200$ MeV. It is not surprising to have a bound state of binding energy $\sim 100\text{-}200$ MeV.

Potential Model

- **Two-body confinement forces**
 - Force without color-cluster saturation is *no good*.

$$V = \sum_{i < j} v(r_{ij}) \longrightarrow \langle V \rangle \sim \frac{n(n-1)}{2} \langle v \rangle \sim \mathbf{gravity}$$

 \blacksquare Spin-independent color-saturated force is linear in n.

$$V = -\sum_{i < j} (\lambda_i^c \cdot \lambda_j^c) v(r_{ij}) \longrightarrow \langle V \rangle \sim \frac{8}{3} n \langle v \rangle$$

 \blacksquare R determined by the energy minimum

$$E(R) = \langle K + V \rangle \sim \frac{n-1}{R^2} \bar{K} + n\bar{v}R$$

$$E_n = (\text{const}) n^{2/3} (n-1)^{1/3} \bar{v}^{2/3} \bar{K}^{1/3}$$

Bag model v.s. Potential model

\blacksquare *n* dependences

Exotic MQ states

- **To look for "stable" (or narrow) multi-quark states, we consider "colorful" configurations.**
- # Hidden Charm Pentaquarks are cases in which the color-octet "baryon" might be stabilized with the help of color-octet heavy "quarkonium".

Heavy Quark

QCD Lagrangian is flavor independent, but the coupling constant runs.

Charmonium

♯ The quark model gives very good guidelines to classify and interpret the hadron spectrum.

The charmonium spectrum is a textbook example. "hydrogen atom" in QCD

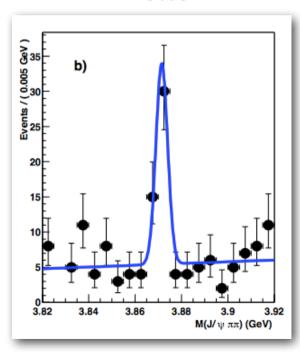
♯ The Hamiltonian with a Linear + Coulomb potential

$$V(r) = -rac{e}{r} + \sigma r$$

E. Eichten, et al., PRL 34 (1975) 369 gives a good fit to the 1S, 1P, 2S, . . charmonium (and bottomonium) states.

Charmonium

Liuming Liu, et al. (Hadron Spectrum Collaboration) JHEP 07, 126 (2012)



HQ Exotic Hadrons

- \blacksquare X(3872) found in 2003 by Belle (KEK)
 - \rightarrow not reproduced by lattice QCD using only q-q^{bar} operators.
- **■** Z(3900), Z(4430) etc. : charged hidden charm states

X(3872)

Belle

 $Z_c^+(4430)$

Belle

PRL 100 (2008) 142001

 $Z_c^+(3900)$

BES III

PRL 110 (2013) 252001

Hidden Charm Pentaquark Pc

 $P_c \rightarrow J/\psi + p$ (ccuud) LHCb (*PRL 115 (2015) 07201*) found two penta-quark states with hidden cc.

Hidden Charm Pentaquark Pc

Constituent quark model analyses

- **■** Study of qqq cbar c five quark system with three kinds of quark-quark hyperfine interaction, S.G. Yuan, K.W. Wei, J. He, H.S. Xu, and B.S. Zou, Eur. Phys. J. A 48 (2012) 61
- The hidden charm pentaquarks are the hidden color-octet uud baryons?
 Sachiko Takeuchi, Makoto Takizawa,
 Physics Letters B 764 (2017) 254–259
- **♯** Flavor-singlet charm pentaquark
 Yoya Irie, Makoto Oka and Shigehiro Yasui,
 in preparation
- **♯** Hidden-charm pentaquark with strangeness Sachiko Takeuchi, Makoto Oka in preparation

Hidden Charm Pentaquark Pc

the color 1
$$c\bar{c}$$
 $\Delta_{\rm CM} \equiv \langle -\sum_{i < j} (\vec{\lambda}_i \cdot \vec{\lambda}_j) (\vec{\sigma}_i \cdot \vec{\sigma}_j) \rangle$
 $56 = (8, 1/2) + (10, 3/2)$
 $(8,1/2)$ $\Delta_{\rm CM} = -8$ $c\bar{c}$ uud (udd) = $\eta_c/J/\psi+p$
 $(10,3/2)$ $\Delta_{\rm CM} = 8$

$$70 = (1, 1/2) + (8, 1/2) + (8, 3/2) + (10, 1/2)$$
 $(1,1/2)$
 $\Delta_{CM} = -14$
 $\Delta_{CM} = -2$
 $\Delta_{CM} = -2$

The most favored state with $c\bar{c}$ by CMI may not be $J/\psi + p$.

$$P_{cs}$$
 family (I=0, Str=-1)
($c\overline{c}$)_{8,J=1} + (uds)_{8, J=1/2} $J^{\pi} = 1/2^-$, 3/2-
($c\overline{c}$)_{8,J=0} + (uds)_{8, J=1/2} $J^{\pi} = 1/2^-$

Flavor Singlet Pentaquark Pcs

♯ Potential Quark Model

Linear confinement with color Casimir dependence

$$V_{\text{conf}} = \sum_{i < j} -\sigma(\lambda_i \cdot \lambda_j) r_{ij}$$

Coulomb electric interaction from one-gluon-exchange

$$V_{\text{Coulomb}} = \sum_{i < j} \frac{\alpha_s}{4r_{ij}} (\lambda_i \cdot \lambda_j)$$

Color magnetic spin-spin interaction from OGE

$$V_{\text{CMI}} = -\frac{\alpha_s}{4} \sum_{i < j} \frac{\pi}{m_i m_j} (\lambda_i \cdot \lambda_j) \left[1 + \frac{2}{3} \sigma_i \cdot \sigma_j \right] \delta(r_{ij})$$

Non-relativistic quarks with

$$m(u, d) = 313 \,\text{MeV}$$
 $m(s) = 522 \,\text{MeV}$

Instanton Induced Interaction

Instanton: Classical solution of 4-dim. Euclidian QCD

Light quarks couple with instanton

Effective point-like interaction of light quarks (KMT)

3-body interaction

$$V_{\text{III3}} = V_0 \frac{189}{40} \sum_{(ijk)} \mathcal{A}_3^f \left[1 - \frac{1}{7} (\sigma_i \cdot \sigma_j + \sigma_j \cdot \sigma_k + \sigma_k \cdot \sigma_i) \right] \delta(r_{ij}) \delta(r_j k)$$

2-body interaction

$$V_{\text{III2}} = U_0^{(2)} \frac{15}{8} \sum_{i < j} \mathcal{A}_2^f \frac{1}{m_i m_j} \left[1 - \frac{1}{5} \sigma_i \cdot \sigma_j \right] \delta(r_{ij})$$

The 3-body III is *repulsive* for flavor singlet u-d-s systems

2-body III

Flavor Singlet Pentaquark Pcs

\blacksquare P_{cs} family (I=0, Str=-1)

(I,J^P)	octet type (8)					
		component	color	spin	flavor	isospin
$(0,1/2^-)$	8	$car{c}$	8	0	_	
		uds	8	1/2	1	0
$(0,1/2^-)$	8'	$car{c}$	8	1		
		uds	8	1/2	1	0
$(0, 3/2^-)$	8*	$car{c}$	8	1		_
		uds	8	1/2	1	0

Energy Spectrum (Preliminary)

Y. Irie, S. Yasui. M. Oka

A variational method is used for a qualitative evaluation of the spectrum.

The lowest energy state is 8'.

$$(1/2^-, S_{c\bar{c}} = 1)$$

The instanton induced interaction lowers the masses by about 80 MeV.

Two 1/2⁻ states mix by the CMI.

Energy Spectrum (Preliminary)

Y. Irie, S. Yasui. M. Oka

A variational method is used for a qualitative evaluation of the spectrum.

The lowest energy state is 8'.

$$(1/2^-, S_{c\bar{c}} = 1)$$

The instanton induced interaction lowers the masses by about 80 MeV.

Two 1/2⁻ states mix by the CMI.

Decays

Y. Irie, S. Yasui. M. Oka

$$\eta_c(J/\psi) + \Lambda$$

Flavor SU(3): suppressed

$$D_s + \Lambda_c$$

(barely) allowed

8* : D-wave decay

$$D_s^* + \Lambda_c$$

8*: S-wave decay

With Instantons

→ forbidden

Production

Pc(4380), Pc(4450)

$$\Lambda_b^0(bud) \to Pc^+ + K^-$$

$$Pc^+ \to J/\Psi + p$$

R. Aaij *et al.* (LHCb Collaboration)
Phys. Rev. Lett. 115, 072001 – Published 12 August 2015

$$\begin{array}{c} \Lambda_b^0(bud) \to (c\bar{c}uds) + \underline{\pi}^0 \\ \quad \text{no charge} \end{array}$$

$$\Lambda_b^0 = \begin{bmatrix} b & & & \\ u & & \\ u & & \\ d & & \\ d & & \\ \end{bmatrix} \pi^0 \quad (c\bar{c}uds)$$

$$\Xi_b^-(bds) \to (c\bar{c}uds) + \underline{K^-}$$
 minus charge!

$$\Xi_{b}^{-} \left\{ \begin{matrix} b & & & \\ & \bar{u} \\ d & & \\ d & & \\ s \end{matrix} \right\} K^{-}$$

$$\left\{ \begin{matrix} c\bar{c}uds \\ c \\ d \\ s \end{matrix} \right\} (c\bar{c}uds)$$

Conclusion+

Exotic (MQ) hadrons can be keys for understanding the mechanisms of

CONFINEMENT – novel color configurations HADRON COUPLINGS/ INTERACTIONS

- Pentaquarks
 Hidden-charm pentaquarks
 P_c = ccqqq (flavor octet),
 P_{cs} = ccuds (flavor singlet)
- Hexaquarks (aka Dibaryon)
 H=q⁶=(uuddss) (flavor singlet)
 H_c=(cuudds)=(cud uds) (flavor 3bar)

Contributions of III

Two-Body III

more attractive in color octet

Three-Body III

repulsive in color octet

Total

Net effects are almost the same

Contributions of CMI

$$V_{\text{CMI}} = -\frac{\alpha_s}{4} \sum_{i < j} \frac{\pi}{m_i m_j} (\lambda_i \cdot \lambda_j) \left[1 + \frac{2}{3} \sigma_i \cdot \sigma_j \right] \delta(r_{ij})$$

The CMI between the HQ and LQ modifies the masses.

