We discuss the mechanisms of $\Lambda(1405)$ production in the $\pi^+p \rightarrow K^0\pi\Sigma$ reaction. We find two mechanisms, which lead to very different shapes of the $\pi\Sigma$ mass distributions. The combination of them gives a good description of experimental measurements.

Motivation : Two poles?

There are two poles of the scattering amplitude around nominal $\Lambda(1405)$ energy region.

- **Cloudy bag model** (1990)
 - Fink et al. PRC41, 2720

- **Chiral unitary model** (2001–)
 - Oller et al. PLB500, 263
 - Oset et al. PLB527, 99
 - Jido et al. PRC66, 025203
 - Hyodo et al. PRC68, 018201

Model for the reaction

We consider the limit where the final K^0 is almost at rest.

Chiral term

Initial c.m. energy of π^+p system ~ 1.9 GeV

- \rightarrow nucleon resonance excitation in the initial stage:
- \rightarrow πN decay data

N(1710) contribution

- Effective chiral Lagrangian
- Chiral unitary model

Numerical results

Experiment : D. W. Thomas, et al., NPB56, 15 (1973)

Conclusions

- We calculate the $\pi^+p \rightarrow K^0\pi\Sigma$ reaction using the chiral unitary model.
- There are two mechanisms in the initial stage interaction.
- They filter each one of the resonances.
- Combination of the two mechanisms gives a good description of data.

T. Hyodo, et al., nucl-th/0307005