Phenomenological study for the Θ^+ and two-meson coupling

Tetsuo Hyodoa

and A. Hosakaa

aRCNP, Osaka

2006, Mar. 1st
Contents

★ Introduction
★ Pure antidecuplet case
★ 8–10 mixing case
★ Mass spectra
★ Decay widths
★ Two-meson coupling
★ Coupling constants
★ Meson induced Θ production
★ Summary
Existence of Θ^+ + Flavor SU(3) symmetry

Existence of flavor partners of Θ^+

Assuming the flavor multiplet that Θ^+ belongs to, we examine its properties by symmetry relation, in connection with known baryon resonances.

to determine the J^P of Θ^+

Phenomenological but model independent analysis up to $O(m_s)$
Pure antidecuplet case

Simplest assignment for Θ^+

Test the masses and widths of partners via flavor SU(3) symmetry relations
Pure antidecuplet case

Mass: Gell-Mann—Okubo formula

\[M(\bar{10}; Y) = M_{10} - aY \]

Two parameters ← Mass of Θ and N*

Width: SU(3) symmetric coupling

\[g_{\Theta KN} = \sqrt{6} g_{N^* \pi N} \]

\[\Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_R^{2l}} \]

One parameter ← Width of N*
Mass and width [MeV]

\[M(\bar{10}; Y) = M_{10} - \alpha Y, \quad g_{\Theta KN} = \sqrt{6}g_{N^* \pi N}, \quad \Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_R^{2l}} \]

<table>
<thead>
<tr>
<th>(J^P)</th>
<th>(M_{\Theta})</th>
<th>(M_N)</th>
<th>(M_\Sigma)</th>
<th>(M_\Xi)</th>
<th>(\Gamma_{\Theta})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2(^-)</td>
<td>(1540)</td>
<td>(1647)</td>
<td>(1753)</td>
<td>(1860)</td>
<td>(156.1)</td>
</tr>
<tr>
<td>exp.</td>
<td>(\Theta(1540))</td>
<td>(N(1650))</td>
<td>(\Sigma(1750))</td>
<td>(\Xi(1860))</td>
<td></td>
</tr>
<tr>
<td>1/2(^+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2(^+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2(^-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pure antidecuplet case

Mass and width [MeV]

\[M(10; Y) = M_{10} - aY, \quad g_{\Theta KN} = \sqrt{6} g_{N*\pi N}, \quad \Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_R^{2l}} \]

<table>
<thead>
<tr>
<th>(J^P)</th>
<th>(M_\Theta)</th>
<th>(M_N)</th>
<th>(M_\Sigma)</th>
<th>(M_\Xi)</th>
<th>(\Gamma_\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2^-</td>
<td>1540</td>
<td>1647</td>
<td>1753</td>
<td>1860</td>
<td>156.1</td>
</tr>
<tr>
<td></td>
<td>(\Theta(1540))</td>
<td>(N(1650))</td>
<td>(\Sigma(1750))</td>
<td>(\Xi(1860))</td>
<td></td>
</tr>
<tr>
<td>1/2^+</td>
<td>1540</td>
<td>1710</td>
<td>1880</td>
<td>2050</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>(\Theta(1540))</td>
<td>(N(1710))</td>
<td>(\Sigma(1880))</td>
<td>(\Xi(2030))</td>
<td></td>
</tr>
<tr>
<td>3/2^+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2^-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pure antidecuplet case

Mass and width [MeV]

\[M(10; Y) = M_{10} - aY, \quad g_{\Theta KN} = \sqrt{6}g_{N^* \pi N}, \quad \Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_R^{2l}} \]

<table>
<thead>
<tr>
<th>J^P</th>
<th>M_\Theta</th>
<th>M_N</th>
<th>M_\Sigma</th>
<th>M_\Xi</th>
<th>\Gamma_\Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2^-</td>
<td>1540</td>
<td>1647</td>
<td>1753</td>
<td>1860</td>
<td>156.1</td>
</tr>
<tr>
<td>exp.</td>
<td>\Theta(1540)</td>
<td>N(1650)</td>
<td>\Sigma(1750)</td>
<td>\Xi(1860)</td>
<td></td>
</tr>
<tr>
<td>1/2^+</td>
<td>1540</td>
<td>1710</td>
<td>1880</td>
<td>2050</td>
<td>7.2</td>
</tr>
<tr>
<td>exp.</td>
<td>\Theta(1540)</td>
<td>N(1710)</td>
<td>\Sigma(1880)</td>
<td>\Xi(2030)</td>
<td></td>
</tr>
<tr>
<td>3/2^+</td>
<td>1540</td>
<td>1720</td>
<td>1900</td>
<td>2080</td>
<td>10.6</td>
</tr>
<tr>
<td>exp.</td>
<td>\Theta(1540)</td>
<td>N(1720)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2^-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pure antidecuplet case

Mass and width [MeV]

\[M(10, Y) = M_{10} - aY, \quad g_{\Theta KN} = \sqrt{6}g_{N^*\pi N}, \quad \Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_R^{2l}} \]

<table>
<thead>
<tr>
<th>J^P</th>
<th>M_\Theta</th>
<th>M_N</th>
<th>M_\Sigma</th>
<th>M_\Xi</th>
<th>\Gamma_\Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2^-</td>
<td>1540 Θ(1540)</td>
<td>1647 N(1650)</td>
<td>1753 Σ(1750)</td>
<td>1860 Ξ(1860)</td>
<td>156.1</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2^+</td>
<td>1540 Θ(1540)</td>
<td>1710 N(1710)</td>
<td>1880 Σ(1880)</td>
<td>2050 Ξ(2030)</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2^+</td>
<td>1540 Θ(1540)</td>
<td>1720 N(1720)</td>
<td>1900</td>
<td>2080</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2^-</td>
<td>1540 Θ(1540)</td>
<td>1700 N(1700)</td>
<td>1860</td>
<td>2020 Ξ(2030)</td>
<td>1.3</td>
</tr>
</tbody>
</table>

are not reproduced simultaneously.
Octet-antidecuplet mixing

Second simplest assignment for Θ^+

Mixing is induced by the SU(3) breaking in mass term.
Octet-antidecuplet mixing

Mass formulae: GMO + mixing \((N, \Sigma)\)

\[
M_\Theta = M_{10} - 2a \\
M_{\Xi_{10}} = M_{10} + a \\
M_\Lambda = M_8 \\
M_{\Xi_8} = M_8 + b + \frac{1}{2}c \\
M_{N_1} = \left(M_8 - b + \frac{1}{2}c \right) \cos^2 \theta_N + (M_{10} - a) \sin^2 \theta_N - \delta \sin 2\theta_N \\
M_{N_2} = \left(M_8 - b + \frac{1}{2}c \right) \sin^2 \theta_N + (M_{10} - a) \cos^2 \theta_N + \delta \sin 2\theta_N \\
M_{\Sigma_1} = (M_8 + 2c) \cos^2 \theta_\Sigma + M_{10} \sin^2 \theta_\Sigma - \delta \sin 2\theta_\Sigma \\
M_{\Sigma_2} = (M_8 + 2c) \sin^2 \theta_\Sigma + M_{10} \cos^2 \theta_\Sigma + \delta \sin 2\theta_\Sigma \\
\]

8 masses v.s. 6 parameters

\(J^P = 1/2^-\) : too wide width
\(J^P = 3/2^+\) : states are not well established
Mass spectra

1/2^+ predicted

3/2^- predicted

Mass spectrum [MeV]
1/2^+ predicted

3/2^- predicted

Mass spectrum [MeV]

Mass spectra
Decay width of Θ

$g_\Theta = \sqrt{6} \left(g_{N_2} \cos \theta_N - g_{N_1} \sin \theta_N \right)$

$\Gamma_R = g_R^2 F_L \frac{p^{2l+1}}{M_R^{2l}}$

<table>
<thead>
<tr>
<th>J^P</th>
<th>θ_N [deg]</th>
<th>Γ_Θ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2^+$</td>
<td>29</td>
<td>29.1</td>
</tr>
<tr>
<td>$3/2^-$</td>
<td>33</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Narrow width
Then, what about two-meson coupling?

: large branching ratio of $N^* \rightarrow \pi \pi N$
: $\pi K N$ molecule picture for the Θ

SU(3) relation enable us to calculate

the cross section of

from the decay of $N^* \rightarrow \pi \pi N$
Two-meson coupling

The structure of the two-meson coupling

• The effect of the two-meson coupling was studied by evaluating the self-energy.

• We examined possible structures, and found that two types of the interaction Lagrangians were important.

• These terms provided a sizable contribution.
Two-meson coupling

Branching fraction [%]

<table>
<thead>
<tr>
<th>J^P</th>
<th>state</th>
<th>(\pi N)</th>
<th>(\pi\pi N(s))</th>
<th>(\pi\pi N(v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2^+)</td>
<td>N(1440)</td>
<td>65</td>
<td>7.5</td>
<td><8</td>
</tr>
<tr>
<td></td>
<td>N(1710)</td>
<td>15</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>(3/2^-)</td>
<td>N(1520)</td>
<td>55</td>
<td>25</td>
<td><85-95</td>
</tr>
<tr>
<td></td>
<td>N(1700)</td>
<td>10</td>
<td><35</td>
<td></td>
</tr>
</tbody>
</table>

Still large uncertainty
Constraints on the coupling

We impose phenomenological constraints.

Self-energy: not too large, but not too small

$\pi^- p \rightarrow K^- \Theta^+$ at KEK: upper limit is $\sim 4.1 \mu b$

$\sim 100 \text{ MeV}$

π^-

p

K^-

Θ^+

$< 4.1 \mu b$
Constraints on the coupling

Two structures should be added coherently.

\[\pi^- K^- + \pi^+ K^+ \]

\[\Theta^+ \]

\[\pi^- K^- \]

\[\Theta^+ \]

\[\pi^- K^- \]

\[\Theta^+ \]

\[p \]

\[s \]

\[\Theta^+ \]

\[\Theta^+ \]

\[v \]

\[\rightarrow \text{interference effect among } s \text{ and } v. \]
\[\pi^- p \rightarrow K^- \Theta^+ \]

\[K^+ p \rightarrow \pi^+ \Theta^+ \]

1/2^+

\[\sigma(K^+) \approx 50 \]

3/2^-

\[\sigma(\pi^-) \approx 3 \]

large interference

small interference
Masses of $\Theta(1540)$ and $\Xi(1860)$ are well fitted in the 8–10 mixing scheme with $J^P = 1/2^+$ or $3/2^-$ baryons.

A very narrow width of Θ can be obtained for the $J^P = 3/2^-$ case.

For both J^P, the mixing angle is close to the ideal angle.

Summary 2: Two-meson coupling and Θ production

Based on the mixing scheme, we evaluate the two-meson coupling of Θ, and calculate the reaction process for Θ production.

There is an interference effect between two amplitudes, which is prominent for $1/2^+$ case and rather moderate for $3/2^-$ case.

<table>
<thead>
<tr>
<th>J^P</th>
<th>g_s</th>
<th>g^ν</th>
<th>$\sigma_{K^+}/\sigma_{\pi^-}$</th>
<th>$\text{Re}\Sigma_\Theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2^+$</td>
<td>1.59</td>
<td>-0.27</td>
<td>50</td>
<td>-78 MeV</td>
</tr>
<tr>
<td>$3/2^-$</td>
<td>0.104</td>
<td>0.209</td>
<td>3</td>
<td>-23 MeV</td>
</tr>
</tbody>
</table>