Λ(1405) in chiral dynamics

Tetsuo Hyodoa,b

\textit{TU München}a \quad \textit{YITP, Kyoto}b

2008, Mar. 12th
Introduction: (well) known facts on $\Lambda(1405)$

$\Lambda(1405)$: $J^P = 1/2^-, I = 0$

Mass : 1406.5 ± 4.0 MeV
Width : 50 ± 2 MeV
Decay mode : $\Lambda(1405) \rightarrow (\pi \Sigma)_{I=0} \ 100\%$

"naive" quark model:
p-wave
~ 1600 MeV?

N. Isgur and G. Karl, PRD18, 4187 (1978)

Coupled channel multi-scattering

R.H. Dalitz, T.C. Wong and G. Rajasekaran, PR153, 1617 (1967)

\[
\sigma(\pi^- \Sigma^+) \propto 1/3 |T^{I=0}|^2 + 1/2 |T^{I=1}|^2 - \frac{2}{\sqrt{6}} \text{Re}(T^{I=0} \cdot T^{I=1})
\]

Spectrum is not in $I=0$, but with the cross term, which may change the shape of the spectrum.
Phenomenology of $\bar{K}N$ interaction

Construction of local $\bar{K}N$ potential by chiral dynamics

Application to three-body $\bar{K}NN$ system

Structure of the $\Lambda(1405)$

Nc Behavior and quark structure

Dynamical or CDD (genuine quark state)?

Electromagnetic properties

Chiral unitary approach and \(\Lambda(1405) \)

\[T = \frac{1}{1 - VG} V \]

Strong attraction (\(<-\) chiral)

Bound state below threshold

\(S = -1, \bar{K}N \) s-wave scattering : \(\Lambda(1405) \) in \(I=0 \)

- **Interaction \(<-> \) chiral symmetry**
- **Amplitude \(<-> \) unitarity (coupled channel)**

Non-perturbative framework
Total cross sections of K^-p scattering

Chiral unitary approach and $\Lambda(1405)$

Chiral unitary approach and $\Lambda(1405)$

Description of the resonances

Poles of the amplitude: resonance

$$T_{ij}(\sqrt{s}) \sim \frac{g_i g_j}{\sqrt{s} - M_R + i\Gamma_R/2}$$

<table>
<thead>
<tr>
<th>Real part</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaginary part</td>
<td>Width/2</td>
</tr>
<tr>
<td>Residues</td>
<td>Couplings</td>
</tr>
</tbody>
</table>

Successful description of $\overline{K}N$ scattering

Two poles for the $\Lambda(1405)$
Motivation

Deeply bound (few-body) kaonic nuclei?

Potential is purely phenomenological. What does chiral dynamics tell us about it?

Construction of the effective interaction

Effective interaction based on chiral SU(3) dynamics

Result of chiral dynamics \rightarrow single channel potential

- **Coupled-channel BS** $T_{ij} (\sqrt{s})$
- **+ real interaction** $V_{ij} (\sqrt{s})$

(exact)

- **few-body kaonic nuclei**

- **Single-channel BS** $T^{\text{eff}} (\sqrt{s}) = T_{ii} (\sqrt{s})$
- **+ complex interaction** $V^{\text{eff}} (\sqrt{s})$

(approximate)

- **Schrödinger equation** $f^{\text{eff}} (\sqrt{s}) \sim T^{\text{eff}} (\sqrt{s})$
- **+ local potential** $U^{\text{eff}} (r, \sqrt{s})$

complex, energy-dependent
Construction of the effective interaction

Construction of the single channel interaction

Resummation of the channel to be eliminated

\[T_{22}^{\text{single}} = V_{22} + V_{22} G_2 T_{22}^{\text{single}} \]

\[V_{\text{eff}} = V_{11} + V_{12} G_2 V_{21} + V_{12} G_2 T_{22}^{\text{single}} G_2 V_{21} \]

\[T_{11} = T_{\text{eff}} = V_{\text{eff}} + V_{\text{eff}} G_1 T_{\text{eff}} \]

Equivalent to the coupled-channel equations
Construction of the effective interaction

Single channel $\bar{K}N$ interaction with $\pi\Sigma$ dynamics

Strength: comparable with the WT term

$\sim 1/2$ of phenomenological (Akaishi-Yamazaki) potential

$\pi\Sigma$ resummation: small but pole exists
Construction of the effective interaction

Scattering amplitude in $\bar{K}N$ and $\pi\Sigma$

Resonance in $\bar{K}N$: around 1420 MeV

\leftrightarrow two-pole structure (coupled-channel)

Binding energy: $B = 15$ MeV $\leftrightarrow 30$ MeV

~ 1420 MeV

~ 1405 MeV

Experiment
Construction of the effective interaction

Origin of the two-pole structure

Chiral interaction

\[V_{ij} = -C_{ij} \frac{\omega_i + \omega_j}{4f^2} \]

\[C_{ij} = \begin{pmatrix} \overline{KN} & \pi\Sigma \\ 3 & -\sqrt{\frac{3}{2}} \\ -\sqrt{\frac{3}{2}} & 4 \end{pmatrix} \]

\[\omega_i \sim m_i, \quad 3.3m_\pi \sim m_K \]

Very strong attraction in \(\overline{KN} \) (higher energy) --- bound state

Strong attraction in \(\pi\Sigma \) (lower energy) --- resonance

Two poles : natural consequence of chiral interaction

higher order correction? --> theoretical uncertainty (later)

Construction of the effective interaction

Comparison with phenomenological potential

Chiral interaction

$$V_{ij} = -C_{ij} \frac{(\omega_i + \omega_j)}{4f^2}$$

$$C_{ij} = \begin{pmatrix}
3 & -\sqrt{\frac{3}{2}} \\
-\sqrt{\frac{3}{2}} & 4
\end{pmatrix}$$

Phenomenological

$$v_{ij}(r) \sim -\begin{pmatrix}
436 & 412 \\
412 & 0
\end{pmatrix} g(r)$$

Absence of $\pi\Sigma$ diagonal coupling

--> absence of $\pi\Sigma$ dynamics, resonance

--> strong ($\times2$) attractive interaction in $\bar{K}N$

$\pi\Sigma$ -> $\pi\Sigma$ attraction : flavor SU(3) symmetry

Energy dependence : derivative coupling
Constrution of the effective interaction

\[U(r, \sqrt{s}) = \frac{M_N V^{\text{eff}}(\sqrt{s})}{2 s^{1/2}} \frac{\sqrt{s}}{\tilde{\omega}(\sqrt{s})} g(r) \]

\[g(r) = \frac{e^{-r^2/2b^2}}{\pi^{3/2} b^3} \]

\[b = 0.47 \text{ fm} \] : to reproduce the resonance agreement around threshold : OK

Deviation at lower energy : BS eq. \(<--> \) local potential + Schrödinger eq.
Correction of the strength of the potential

Construction of the effective interaction
We derive the single-channel local potential based on chiral SU(3) dynamics.

Resonance structure in $\bar{K}N$ appears at around 1420 MeV \leftarrow two-pole $\Lambda(1405)$. The strength of the $\bar{K}N$ interaction is comparable with the WT term.

Two poles are the consequence of two attractive interactions in $\bar{K}N$ and $\pi\Sigma$.

Local (non-rel) potential overestimates amplitude at lower energy.

Application to the few-body anti-K system

Application to three-body K-pp system

Hamiltonian: Realistic interactions

\[\hat{H} = \hat{T} + \hat{V}_{NN} + \text{Re} \hat{V}_{KN}(\sqrt{s}) - \hat{T}_{CM} \]

Realistic NN potential (Av18)

\(\bar{K}N \) potential based on chiral SU(3) dynamics (real part) dispersive effect from imaginary part
\(~ 3-4 \text{ MeV in two-body } \bar{K}N \text{ system} \)

Self-consistency of kaon energy and \(\bar{K}N \) interaction

Variational calculation

Model wave function: \(J^P = 0^-, T = 1/2, T_3 = 1/2 \)

\[|\Psi\rangle = \mathcal{N}^{-1} [|\Phi_+\rangle + C |\Phi_-\rangle] \]

\(T_N = 0 \)

\(T_N = 1, \) dominant, used in Faddeev
Application to the few-body anti-K system

Theoretical uncertainties

Different models of chiral dynamics

Energy dependence of $\bar{K}\Lambda$ interaction

Define antikaon “binding energy”

$$-B_K \equiv \langle \Psi | \hat{H} | \Psi \rangle - \langle \Psi | \hat{H}_N | \Psi \rangle$$

Two options for two-body energy

Type I : $\sqrt{s} = M_N + m_K - B_K$

Type II : $\sqrt{s} = M_N + m_K - B_K/2$
We study the $\bar{K}NN$ system with chiral SU(3) potentials in a variational approach.

With theoretical uncertainties,

- $B.E. = 19 \pm 3$ MeV
- $\Gamma(\pi YN) = 40 \sim 70$ MeV

Phenomenological potential

- $B.E. \sim 48$ MeV
- $\Gamma \sim 60$ MeV

Faddeev with chiral interaction

- $B.E. \sim 79$ MeV
- $\Gamma \sim 74$ MeV

No two-nucleon absorption: $\bar{K}NN \rightarrow YN ...$ small?

Structure of dynamically generated resonances

Quark structure of resonances?

\(\text{\textless-- known Nc scaling of } q\bar{q} \text{ meson} \)

\[m \sim \mathcal{O}(1), \quad \Gamma \sim \mathcal{O}(1/N_c), \]

\text{can be used to distinguish } q\bar{q} \text{ from others}

c.f. \(\rho \) meson in \(\pi\pi \) scattering

\(\text{\textlesssim originate from the contracted resonance propagator} \)

\text{in higher order terms}

\text{analysis of Nc scaling } \rightarrow \rho \sim q\bar{q}

Baryon resonances?

\(\text{\textgreater-- analysis of Nc scaling} \)
Introduce the N_c scaling into the model and study the behavior of resonance.

$$m \sim \mathcal{O}(1), \quad M \sim \mathcal{O}(N_c), \quad f \sim \mathcal{O}(\sqrt{N_c})$$

Leading order WT interaction has N_c dep.

$$V = -C \frac{\omega}{2f^2} \sim \mathcal{O}(1/N_c) \quad (\Leftarrow C \sim \mathcal{O}(1))$$

(for baryon and $N_f > 2$)

$$V = -C \frac{\omega}{2f^2}, \quad C \sim \mathcal{O}(N_c) \quad \Rightarrow \quad V \sim \mathcal{O}(1)$$

c.f. meson-meson scattering : $V_{LO} \sim \mathcal{O}(1/N_c) = $ trivial

Nontrivial N_c dependence of the interaction is in **NLO**.
S = -1, I = 0 channel in SU(3) basis

Coupling strengths with Nc dependence

\[V = -C \frac{\omega}{2f^2} \quad f \sim O(\sqrt{N_c}) \]

\[
C^{SU(3)}_{ij}(N_c) = \begin{pmatrix}
1 & 8 & 8 & 27 \\
\frac{9}{2} + \frac{N_c}{2} & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
-\frac{1}{2} - \frac{N_c}{2} & 3 & 0 & 0
\end{pmatrix}
\]

C \propto Nc : finite interaction at Nc \rightarrow \infty

Attractive interaction in singlet channel
Coupling strengths with Nc dependence

\[C^I_{ij}(N_c) = \begin{pmatrix}
\frac{1}{2}(3 + N_c) & -\frac{\sqrt{3}}{2} \sqrt{-1 + N_c} & \frac{\sqrt{3}}{2} \sqrt{3 + N_c} & 0 \\
\frac{\sqrt{3}}{2} \sqrt{-1 + N_c} & 4 & 0 & \frac{\sqrt{3 + N_c}}{2} \\
\frac{\sqrt{3}}{2} \sqrt{3 + N_c} & 0 & 0 & -\frac{3}{2} \sqrt{-1 + N_c} \\
0 & \frac{\sqrt{3 + N_c}}{2} & -\frac{3}{2} \sqrt{-1 + N_c} & \frac{1}{2}(9 - N_c)
\end{pmatrix} \]

Off-diagonal couplings vanish at Nc -> \(\infty \)

--> single-channel problem @ large Nc limit

Attractive interaction in \(\bar{K}N \) -> \(\bar{K}N \)

\(\bar{K}\Xi \) -> \(\bar{K}\Xi \) : attractive -> repulsive for Nc > 9
In the large N_c limit

Attractive interaction in KN(singlet) channels

$C \sim N_c/2$

Critical coupling strength (with N_c dep)

$$C_{\text{crit}}(N_c) = \frac{2[f(N_c)]^2}{m[-G(M_T(N_c) + m)]}$$

$$N_c/2 > C_{\text{crit}}(N_c)$$

Bound state in “1” or KN channels
Nc behavior and quark structure

With SU(3) breaking: Pole trajectories with varying Nc

1 bound state and 1 dissolving resonance

\[\Gamma_R \neq O(1) \]

\[\sim \text{non-qqq (i.e. dynamical) structure} \]

Nc scaling of excited qqq baryon

\[M_R \sim O(N_c), \quad \Gamma_R \sim O(1) \]

Residues in the isospin basis

\[\frac{|g_i|}{|g_{KN}|} \left\{ \begin{array}{ll}
< 1 : \bar{K}N \text{ dominant} \\
> 1 : \text{non} \bar{K}N \text{ dominant}
\end{array} \right. \]

Bound state \(\bar{K}N\) dominant

Dissolving other components

Nc behavior and quark structure
SU(3) components of the poles

Residues in the SU(3) basis

\[
\frac{|g_i|}{|g_1|} \begin{cases} < 1 : \text{singlet dominant} \\ > 1 : \text{non singlet dominant} \end{cases}
\]

bound state
1 dominant
dissolving
other components
We study the Nc scaling of the Λ(1405)

Large Nc limit
- Existence of a **bound state** in “1” or $\bar{K}N$ channel even in the **large Nc limit**

Behavior around Nc = 3
- 1 bound state and 1 dissolving pole: signal of the **non-qqq state**.
- Residues of the would-be-bound-state: dominated by “1” or $\bar{K}N$; consistent with large Nc limit.

Structure of dynamically generated resonances

Resonances ~ quasi-bound two-body states

<--> in some case, CDD pole (genuine state).

Renormalization
change of loop function
~ change of interaction kernel

Formulation of the N/D method
and the structure of low energy interaction
Renormalization schemes

Scattering amplitude in N/D method

\[T = \frac{1}{V^{-1} - G} \]

V: interaction \quad **G**: loop function (cutoff)

Phenomenological scheme

: \(V \) is given by ChPT, fit cutoff to data

N/D method: CDD pole contribution --> \(V \)

Natural renormalization scheme

: exclude CDD pole contribution from \(G \)

\[G(\mu) = 0, \quad \Leftrightarrow \quad T(\mu) = V(\mu) \quad \text{at} \quad \mu = M_T \]

Pole in the effective interaction

\[T = (V^{-1} - G(a + \Delta a))^{-1} = (\left(\frac{1}{V'}\right)^{-1} - G(a))^{-1} \]

↑phenomenological ↑natural

Effective interaction in natural scheme

\[V' = -\frac{8\pi^2}{M\Delta a} \frac{\sqrt{s} - M}{\sqrt{s} - M_{\text{eff}}} \]

\[= -\frac{C}{2f^2} (\sqrt{s} - M_T) + \frac{C}{2f^2} \frac{(\sqrt{s} - M_T)^2}{\sqrt{s} - M_{\text{eff}}} \]

\[M_{\text{eff}} = M - \frac{16\pi^2 f^2}{CM\Delta a} \]

Physically meaningful pole:

\[C > 0, \quad \Delta a < 0 \]

** energy scale of the effective pole **
Example: $\Lambda(1405)$ and $N(1535)$

$$\Delta V \equiv V' - V_{WT}$$

Dynamical or CDD

Origin of dynamical pole?
Summary 4: dynamical or CDD?

We study the origin of the resonances in the chiral unitary approach.

Natural renormalization

Exclude CDD pole contribution from the loop function, consistent with N/D.

Analysis of Λ(1405) and N(1535)

Λ(1405) : CDD pole would be small

N(1535) : appreciable contribution from CDD pole

Large Nc behavior

Summary 5: Structure of $\Lambda(1405)$

Schematic decomposition of $\Lambda(1405)$

$$|\Lambda(1405)\rangle = N_3|qqq\rangle + N_5|qqqq\bar{q}\rangle + N_{MB}|B\rangle|M\rangle + \ldots$$

- Analysis of Nc behavior
 - $N_3 << 1$

- Analysis of natural renormalization
 - N_{MB} dominates

- Both analyses consistently indicate the dominance of N_{MB} component

Not trivial! c.f. rho meson, $N(1535)$, ...