$\Lambda(1405)$ in chiral dynamics

2008, Oct. 2nd

Tetsuo Hyodo^{a,b} *TU München^a* YITP, Kyoto^b JSPS Research Fellow

Introduction

$\Lambda(1405)$ and $\overline{K}N$ dynamics

$\Lambda(1405): J^P = 1/2^-, I = 0$

Mass : 1406.5 ± 4.0 MeV Width : 50 ± 2 MeV Decay mode : $\Lambda(1405) \rightarrow (\pi\Sigma)_{I=0}$ 100%

"naive" quark model : p-wave ~1600 MeV?

N. Isgur and G. Karl, PRD18, 4187 (1978)

R.H. Dalitz, T.C. Wong and G. Rajasekaran, PR153, 1617 (1967)

(deeply bound) kaonic nuclei --> exp. @ J-PARC

Chiral unitary approach

S = -1, $\overline{K}N$ s-wave scattering : $\Lambda(1405)$ in I=0 \circ Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

Amplitude <-- unitarity (coupled channel)

R.H. Dalitz, T.C. Wong and G. Rajasekaran, PR153, 1617 (1967)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002),
.... many others

works successfully, also in S=0, mesonmeson scattering, heavy quark sectors, ...

Introduction

Experimental data

T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Phys. Rev. C68, 018201 (2003), T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Prog. Theor. Phys. 112, 73 (2004)

Contents

Contents

$\stackrel{\scriptstyle{\smile}}{=}$ Structure of $\Lambda(1405)$ resonance

- Dynamical or CDD (genuine quark state) ? <u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008).</u>
- Nc Behavior and quark structure
 <u>T. Hyodo, D. Jido, L. Roca, Phys. Rev. D77, 056010 (2008).</u>

 <u>L. Roca, T. Hyodo, D. Jido, Nucl. Phys. A809, 65 (2008).</u>
- Electromagnetic properties <u>T. Sekihara, T. Hyodo, D. Jido, arXiv: 0803.4068 [nucl-th], Phys. Lett. B, in press</u>

Phenomenology of **K**N interaction

Construction of local KN potential

T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008).

• Application to three-body KNN system A. Doté, T. Hyodo, W. Weise, Nucl. Phys. A804, 197 (2008)

A. Doté, T. Hyodo, W. Weise, arXiv:0806.4917 [nucl-th]

Dynamical or CDD (genuine quark state) ?

Dynamical state and CDD pole

Resonances in two-body scattering

Knowledge of interaction (potential)

Experimental data (cross section, phase shift,...)

(a) dynamical state: molecule, quasi-bound, ...

(b) CDD pole: elementary, independent, ...

L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

Resonance in chiral unitary approach -> (a) dynamical, but not always...

Dynamical or CDD (genuine quark state) ?

CDD pole contribution in chiral unitary approach

Amplitude in chiral unitary model

- $T = \frac{1}{V^{-1} G}$ V : interaction kernel (potential) G : loop integral (Green's function)

Known CDD pole contribution

- (1) Explicit resonance field in V
- (2) Contracted resonance propagator in V
- We point out the CDD pole contribution in the subtraction constant in G.
- **Analysis of phenomenological amplitude** N(1535) in π N scattering --> dynamical + CDD pole Λ(1405) in KN scattering --> mostly dynamical

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008).

Nc behavior and quark structure

Nc scaling in the model

Nc: number of color in QCD Hadron effective theory / quark structure

The Nc behavior is known from the general argument. <-- introducing Nc dependence in the model, analyze the resonance properties with respect to Nc

J.R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004)

Nc scaling of (excited) qqq baryon

 $M_R \sim \mathcal{O}(N_c), \quad \Gamma_R \sim \mathcal{O}(1)$

Ĕ-200 -250 -100 **Result :** $\Gamma_R \neq \mathcal{O}(1)$ $\text{Re W} - M_{\text{N}} - m_{\text{K}} [\text{MeV}]$

-50 -100

≥-150

~ non-qqq (i.e. dynamical) structure

T. Hyodo, D. Jido, L. Roca, Phys. Rev. D77, 056010 (2008).

L. Roca, T. Hyodo, D. Jido, Nucl. Phys. A809, 65 (2008).

 $z_2(12)$

100

200

Electromagnetic properties

Electromagnetic properties

Attaching photon to resonance --> em properties : rms, form factors,...

result of mean squared radii :

 $< r^2 >_E = -2.193 \text{ fm}^2$

large (em) size of the Λ(1405) --> meson-baryon picture

T. Sekihara, T. Hyodo, D. Jido, arXiv: 0803.4068 [nucl-th], Phys. Lett. B, in press

Structure of $\Lambda(1405)$ resonance **Summary 1 : Structure of** $\Lambda(1405)$ We study the structure of the $\Lambda(1405)$ Dynamical or CDD? => dominance of the MB components Analysis of Nc scaling => non-qqq structure Electromagnetic properties => large e.m. size

Structure of $\Lambda(1405)$ resonance Summary 1 : Structure of $\Lambda(1405)$ We study the structure of the $\Lambda(1405)$ **Dynamical or CDD?** => dominance of the MB components Analysis of Nc scaling => non-qqq structure Electromagnetic properties => large e.m. size Independent analyses consistently support the meson-baryon molecule picture of the $\Lambda(1405)$

Deeply bound (few-body) kaonic nuclei?

Potential is purely phenomenological. What does chiral dynamics tell us about it?

Y. Akaishi & T. Yamazaki, Phys. Rev. C <u>65</u> (2002) 044005 T. Yamazaki & Y. Akaishi, Phys. Lett. B <u>535</u> (2002) 70

Effective interaction based on chiral SU(3) dynamics

Few-body kaonic nuclei in chiral dynamics

Result of chiral dynamics --> single channel KN potential --> few-body kaonic nuclei

Construction of effective potential

1) Coupled-channel --> single K
N channel BS equation elimination of πΣ channel (exact)

2) Local potential in Schrödinger equation (approximate)

We obtain the KN interaction weaker than the phenomenological one (factor ~1/2).

Scattering amplitude in $\overline{K}N$ and $\pi\Sigma$

Resonance in KN : around 1420 MeV <-- strong πΣ dynamics (coupled-channel)

Binding energy : B = 15 MeV <--> 30 MeV

Two poles with same quantum numbers Different weights of the pole residues --> different spectrum D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003)

14

Origin of the two-pole structure

Chiral interaction

Very strong attraction in $\overline{K}N$ (higher energy) --> bound state Strong attraction in $\pi\Sigma$ (lower energy) --> resonance

Two attractive interaction --> Two states $\pi\Sigma \rightarrow \pi\Sigma$ attraction : chiral (SU(3)) symmetry

Schematic illustration : AY vs Chiral

Summary 2 : KN interaction

We derive the single-channel local potential based on chiral SU(3) dynamics.

Resonance structure in KN appears at around 1420 MeV <-- strong πΣ dynamics Less attractive interactions than the phenomenological interaction T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008) Application to K-pp system B.E. $= 19 \pm 3$ MeV $\Gamma(\pi YN) = 40 \sim 70 \text{ MeV}$ A. Doté, T. Hyodo and W. Weise, Nucl. Phys. A 804, 197 (2008), arXiv: 0806.4917 [nucl-th]