Structure of the $\Lambda(1405)$ and kaon-nucleon dynamics

Tetsuo Hyodoa

Tokyo Institute of Technologya

supported by Global Center of Excellence Program
“Nanoscience and Quantum Physics”

2009, May 11th
Contents

Chiral unitary approach

Structure of Λ(1405)

• Dynamical or CDD pole (genuine quark state)?

• Nc Behavior and quark structure

• Electromagnetic properties

Effective single-channel KN interaction

On the KNN (strange dibaryon) system
Description of $S = -1$, $\bar{K}N$ s-wave scattering: $\Lambda(1405)$ in $I=0$

- Interaction \leftrightarrow chiral symmetry

- Amplitude \leftrightarrow unitarity (coupled channel)

 R.H. Dalitz, T.C. Wong, G. Rajasekaran, PR153, 1617 (1967)

\[
T = \frac{1}{1 - VG} V
\]

\[= \text{chiral}\]

works successfully, also in $S=0$ sector, meson-meson scattering sectors, systems including heavy quarks, ...
Chiral unitary approach

How it works? vs experimental data

Total cross sections

threshold ratios

<table>
<thead>
<tr>
<th></th>
<th>(\gamma)</th>
<th>(R_c)</th>
<th>(R_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.</td>
<td>2.36</td>
<td>0.664</td>
<td>0.189</td>
</tr>
<tr>
<td>theo.</td>
<td>1.80</td>
<td>0.624</td>
<td>0.225</td>
</tr>
</tbody>
</table>

\[\pi \Sigma \] spectrum

πΣ spectrum

πΣ mass distribution

\(\Rightarrow \) \(\bar{K}N \) interaction in this framework
Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

\[T_{ij}(\sqrt{s}) \sim \frac{g_ig_j}{\sqrt{s - M_R + i\Gamma_R/2}} \]

\[\sim \]

Real part

Imaginary part

Residues

Mass

Width/2

Couplings

Physical state: superposition

\[|\Lambda(1405)\rangle = a|\Lambda_1^*\rangle + b|\Lambda_2^*\rangle \]

Dynamical state and CDD pole

Resonances in two-body scattering

- Knowledge of interaction (potential)
- Experimental data (cross section, phase shift,...)

(a) dynamical state: molecule, quasi-bound, ...

\[\begin{array}{c}
\text{M} \\
\text{B}
\end{array} \]

e.g.) Deuteron in NN, positronium in e^+e^-, (σ in $\pi\pi$), ...

(b) CDD pole: elementary, independent, ...

\[\begin{array}{c}
\text{M} \\
\text{B}
\end{array} \]

e.g.) J/Ψ in e^+e^-, (ρ in $\pi\pi$), ...

Resonances in chiral unitary approach \rightarrow (a) dynamical?

CDD pole contribution in chiral unitary approach

Amplitude in chiral unitary model

\[T = \frac{1}{V^{-1} - G} \]

- \(V \): interaction kernel (potential)
- \(G \): loop integral (Green’s function)

Known CDD pole contribution

1. Explicit resonance field in \(V \)
2. Contracted resonance propagator in \(V \)

Defining “natural renormalization scheme”, we find CDD pole contribution in \(G \) (subtraction constant).

Structure of \(\Lambda(1405) \) resonance

\[N(1535) \text{ in } \pi N \text{ scattering} \]
\[\rightarrow \text{dynamical} + \text{CDD pole} \]

\[\Lambda(1405) \text{ in } \bar{K}N \text{ scattering} \]
\[\rightarrow \text{mostly dynamical} \]
Nc scaling in the model

Nc : number of color in QCD
Hadron effective theory / quark structure

The Nc behavior is known from the general argument.
 <-- introducing Nc dependence in the model,
analyze the resonance properties with respect to Nc

Nc scaling of (excited) qqq baryon

\[M_R \sim \mathcal{O}(N_c), \quad \Gamma_R \sim \mathcal{O}(1) \]

Result : \(\Gamma_R \neq \mathcal{O}(1) \)
~ non-qqq (i.e. dynamical) structure

Electromagnetic properties

Attaching photon to resonance

--> em properties : rms, form factors,...

Structure of Λ(1405) resonance

result of mean squared radii :

\[|\langle r^2 \rangle_E | = 0.33 \text{ [fm}^2\text{]} \]

large (em) size of the Λ(1405) : c.f. -0.12 [fm^2] for neutron

--> meson-baryon picture

We study the structure of the $\Lambda(1405)$ resonance.

Summary 1: Structure of $\Lambda(1405)$

- Dynamical or CDD?
 - \Rightarrow dominance of the MB components

- Analysis of Nc scaling
 - \Rightarrow non-qqq structure

- Electromagnetic properties
 - \Rightarrow large e.m. size
We study the structure of the $\Lambda(1405)$ resonance.

Dynamical or CDD?
- Dominance of the MB components

Analysis of Nc scaling
- Non-qqq structure

Electromagnetic properties
- Large e.m. size

Independent analyses consistently support the **meson-baryon molecule picture** of the $\Lambda(1405)$.
Effective single-channel KN interaction

Effective interaction based on chiral SU(3) dynamics

Result of chiral dynamics --\(\rightarrow\) single channel potential

Coupled-channel BS eq. + real valued interaction
\[T_{ij}(\sqrt{s}) \]
\[V_{ij}(\sqrt{s}) \]

few-body K-nuclei

(exact transformation)

Single-channel BS eq. + complex interaction
\[T_{\text{eff}}(\sqrt{s}) = T_{ii}(\sqrt{s}) \]
\[V_{\text{eff}}(\sqrt{s}) \]

(with approximation)

Schrödinger equation + local, complex, and energy-dependent potential
\[f_{\text{eff}}(\sqrt{s}) \sim T_{\text{eff}}(\sqrt{s}) \]
\[U_{\text{eff}}(r, \sqrt{s}) \]
Effective single-channel KN interaction

(Diagonal) scattering amplitude in $\bar{K}N$ and $\pi\Sigma$

Resonance in $\bar{K}N$ channel: at around 1420 MeV

~ 1420 MeV

~ 1405 MeV

Binding energy: $B = 15$ MeV $\leftrightarrow 30$ MeV
Effective single-channel KN interaction

Origin of the two-pole structure

Chiral interaction

\[
V_{ij} = -C_{ij} \frac{\omega_i + \omega_j}{4f^2}
\]

\[
C_{ij} = \begin{pmatrix}
3 & -\sqrt{3/2} \\
-\sqrt{3/2} & 4
\end{pmatrix}
\]

\[
\omega_i \sim m_i, \quad 3.3m_\pi \sim m_K
\]

Very strong attraction in $\bar{K}N$ (higher energy) \(\rightarrow\) bound state

Strong attraction in $\pi\Sigma$ (lower energy) \(\rightarrow\) resonance

Two poles : natural consequence of chiral interaction (pole position is model dependent)
Effective single-channel $\bar{K}N$ interaction

Schematic illustration : AY vs Chiral

AY

$\bar{K}N$ | **bound state**

$\pi\Sigma$ | **continuum**

Chiral *(Dalitz’s coupled-channel model)*

$\bar{K}N$ | **bound state**

$\pi\Sigma$ | **resonance**

Feshbach resonance

$\Lambda(1405)$ experiment

Feshbach resonance on resonating continuum
Summary 1: \(\bar{K}N \) interaction

We study the consequence of chiral SU(3) dynamics in \(\bar{K}N \) phenomenology.

- Resonance structure in \(\bar{K}N \) appears at around 1420 MeV via strong \(\pi \Sigma \) dynamics.
- Two attractive interactions in \(\bar{K}N \) and \(\pi \Sigma \) lead to a weaker effective \(\bar{K}N \) interaction.
- This results in two poles for the \(\Lambda(1405) \).

Application to K-pp system (without \(\pi \Sigma \bar{N} \))

Doté-san’s talk
On the KNN (strange dibaryon) system

Which channel is relevant?

Theoretical studies
KNN - (πΣN) channels

Experimental candidates
- energy ≤ πΣN

observed in ΛN inv. mass
effect of decay channel coupling
The KNN (strange dibaryon) system

Λ*N state in chiral dynamics

Chiral dynamics --> two Λ* states: Λ*₁, Λ*₂

|Λ(1405)⟩ = a|Λ*₁⟩ + b|Λ*₂⟩

B=2 system: Λ*₁N, Λ*₂N?

|B = 2, S = −1⟩ = a'|Λ*₁N⟩ + b'|Λ*₂N⟩

Y. Ikeda, RCNP workshop, Dec. 25, 2008

mixing of Λ*₁N <-> Λ*₂N

KNN

No mixing

With mixing

Λ*₁N

Λ*₂N

K-pp (DHW)?

level repulsion --> Λ*₁N becomes light?

T. Uchino, T. Hyodo, M. Oka, in preparation
On the KNN (strange dibaryon) system

Summary 2: KNN system

KNN or strange dibaryon system

To compare with observed candidates, we should choose relevant channel(s).

importance of $\pi\Sigma N$ channel?

actual decay into ΛN channel

--> change the spectrum?

If there are two states for $\Lambda^*(1405)$, there could be two states in KNN-$\pi\Sigma N$ system

Mixing of two Λ^*

--> level repulsion?