Chiral dynamics and baryon resonances

Tetsuo Hyodoa

Tokyo Institute of Technologya

supported by Global Center of Excellence Program “Nanoscience and Quantum Physics”

2009, June 5th
Chiral dynamics

- Low energy theorem (chiral symmetry)
- Dispersion theory (unitarity of S-matrix)
- Baryon resonances in meson-baryon scattering

Structure of $\Lambda(1405)$ resonance

- **Dynamical or CDD pole (genuine quark state)?**

- **Nc Behavior and quark structure**

- **Electromagnetic properties**
Chiral dynamics

Description of hadron-NG boson scattering and resonance

- Interaction <-- chiral symmetry

- Amplitude <-- unitarity (coupled channel)

R.H. Dalitz, T.C. Wong, G. Rajasekaran, PR153, 1617 (1967)

\[
T = \frac{1}{1 - VG} V
\]

works successfully, also in S=0 sector, meson-meson scattering sectors, systems including heavy quarks, ...
Low energy s-wave interaction

Low energy theorem for pion (Ad) scattering with a target (T)

\[\alpha \left[\frac{\text{Ad}(q)}{T(p)} \right] = \frac{1}{f^2} \frac{p \cdot q}{2M_T} \langle F_T \cdot F_{\text{Ad}} \rangle_\alpha + O\left(\left(\frac{m}{M_T}\right)^2\right) \]

s-wave : Weinberg-Tomozawa term

\[V_{ij} = -\frac{C_{ij}}{4f^2}(\omega_i + \omega_j) \]

pion energy

\[C_{ij} = \sum_\alpha C_{\alpha,T} \left(\begin{array}{c} 8 \\ I_{M_i}, Y_{M_i} \\ I_{T_i}, Y_{T_i} \end{array} \right) \left(\begin{array}{c} \alpha \\ 8 \\ I, Y \end{array} \right) \left(\begin{array}{c} 8 \\ I_{M_j}, Y_{M_j} \\ I_{T_j}, Y_{T_j} \end{array} \right) \left(\begin{array}{c} \alpha \\ \alpha \\ I, Y \end{array} \right) \]

pion decay constant \((g_V=1)\)

flavor SU(3) --> sign and strength

Low energy theorem : leading order term in ChPT
Scattering theory: N/D method

Single-channel scattering, masses: M_T and m

G.F. Chew, S. Mandelstam, Phys. Rev. 119, 467 (1960)

\[s = W^2 \]

unphysical cut(s) \[s^- = (M_T - m)^2 \]

unitarity cut \[s^+ = (M_T + m)^2 \]

Divide T into N (umerator) and D (inominator)

\[T(s) = N(s)/D(s) \]

phase space (optical theorem)

\[\text{Im}D(s) = \text{Im}[T^{-1}(s)] N(s) = \frac{\rho(s) N(s)}{2} \text{ for } s > s^+ \]

\[\text{Im}N(s) = \text{Im}[T(s)] D(s) \text{ for } s < s^- \]

Dispersion relation for N and D

\[\rightarrow \text{set of integral equations, input: } \text{Im}[T(s)] \text{ for } s < s^- \]
General form of the (s-wave) amplitude

Neglect unphysical cut (crossed diagrams), set N=1

\[T^{-1}(\sqrt{s}) = \tilde{a}(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)} \]

- pole (and zero) of the amplitude

unphysical cut(s) \(s^- = (M_T - m)^2 \)

\[T^{-1}(\sqrt{s}) = \sum_i \frac{R_i}{\sqrt{s} - \sqrt{s_i}} + \tilde{a}(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)} \]

CDD pole(s), \(R_i, W_i \): not known in advance

CDD pole contribution --> independent particle

Chiral dynamics

Order by order matching with ChPT

Identify loop function G, the rest contribution $\rightarrow V^{-1}$

\[
T^{-1}(\sqrt{s}) = \sum_i \frac{R_i}{\sqrt{s} - \sqrt{s}_i} + \tilde{a}(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)}
\]

\[
- = -i \int \frac{d^4q}{(2\pi)^4} \frac{2M_T}{(P - q)^2 - M_T^2 + i\epsilon} q^2 - m^2 + i\epsilon \bigg|_{\text{dim.reg.}}
\]

\[
= -\frac{2M_T}{(4\pi)^2} \left\{ a + \frac{m^2 - M_T^2 + s}{2s} \ln \frac{m^2}{M_T^2} + \frac{\bar{q}}{\sqrt{s}} \ln \frac{\phi_{++}(s) \phi_{+-}(s)}{\phi_{--}(s) \phi_{-+}(s)} \right\}
\]

\[
= -G(\sqrt{s}; a) \quad \text{subtraction constant (cutoff)}
\]

\[
T(\sqrt{s}) = [V^{-1}(\sqrt{s}) - G(\sqrt{s}; a)]^{-1}
\]

scattering amplitude

V? chiral expansion of T, (conceptual) matching with ChPT

\[
T^{(1)} = V^{(1)}, \quad T^{(2)} = V^{(2)}, \quad T^{(3)} = V^{(3)} - V^{(1)} GV^{(1)}, \ldots
\]
KN scattering and $\Lambda(1405)$

$\Lambda(1405) : J^P = 1/2^-, I = 0$

PDG

- Mass : 1406.5 ± 4.0 MeV
- Width : 50 ± 2 MeV
- Decay mode : $\Lambda(1405) \rightarrow (\pi \Sigma)_{I=0} \quad 100\%$

“naive” quark model

- p-wave
- ~ 1600 MeV?

N. Isgur, G. Karl, PRD18, 4187 (1978)

Coupled channel multi-scattering

R.H. Dalitz, T.C. Wong, G. Rajasekaran, PR153, 1617 (1967)

$\bar{K}N$ int. below threshold

\rightarrow Kaonic nuclei

$\Lambda(1405)$
Chiral dynamics

How it works? vs experimental data

Total cross sections

threshold ratios

<table>
<thead>
<tr>
<th></th>
<th>γ</th>
<th>R_c</th>
<th>R_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.</td>
<td>2.36</td>
<td>0.664</td>
<td>0.189</td>
</tr>
<tr>
<td>theo.</td>
<td>1.80</td>
<td>0.624</td>
<td>0.225</td>
</tr>
</tbody>
</table>

πΣ spectrum

$\Lambda(1405)$

Good agreement with data above, at, and below threshold
Chiral dynamics

Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

\[T_{ij}(\sqrt{s}) \sim \frac{g_ig_j}{\sqrt{s} - M_R + i\Gamma_R/2} \]

Physical "\(\Lambda(1405) \)"

: superposition of two states

Dynamical state and CDD pole

Resonances in two-body scattering

- Knowledge of interaction (potential)
- Experimental data (cross section, phase shift, ...)

(a) dynamical state: molecule, quasi-bound, ...

... in the present case: meson-baryon molecule

(b) CDD pole: elementary, independent, ...

... in the present case: three-quark state

Resonances in chiral dynamics \Rightarrow (a) dynamical?
CDD pole contribution in chiral unitary approach

Amplitude in chiral unitary model

\[T = \frac{1}{V^{-1}G} \]

\(V \) : interaction kernel (potential)
\(G \) : loop integral (Green’s function)

Known CDD pole contribution

1. Explicit resonance field in \(V \)

2. Contracted resonance propagator in \(V \)

Is that all? subtraction constant?
Subtraction constant

Phenomenological (standard) scheme

--> V is given, “a” is determined by data

\[T = \frac{1}{(V^{(1)})^{-1} - G(a)} \]

leading order

\[T = \frac{1}{(V^{(1)} + V^{(2)})^{-1} - G(a')} \]

next to leading order

↑ pole ?

“a” represents the effect which is not included in V.

CDD pole contribution in G?

Natural renormalization scheme

--> fix “a” first, then determine V

exclude CDD pole contribution from G, based on theoretical argument.
Two renormalization schemes

Phenomenological scheme

V is given by ChPT (for instance, leading order term), fit cutoff in G to data

Natural renormalization scheme

determine G to exclude CDD pole contribution, V is to be determined

Same physics (scattering amplitude T)

\[T = \frac{1}{V_{\text{ChPT}}^{-1} - G(a_{\text{pheno}})} = \frac{1}{(V_{\text{natural}})^{-1} - G(a_{\text{natural}})} \]

↑ Effective interaction
Origin of the resonance
Pole in the effective interaction

Leading order V : Weinberg-Tomozawa term

$$V_{WT} = -\frac{C}{2f^2} (\sqrt{s} - M_T)$$

C/f^2 : coupling constant

no s-wave resonance

$$T^{-1} = V_{WT}^{-1} - G(a_{\text{pheno}}) = (V_{\text{natural}})^{-1} - G(a_{\text{natural}})$$

\uparrow ChPT \uparrow data fit \uparrow given

Effective interaction in natural scheme

$$V_{\text{natural}} = -\frac{C}{2f^2} (\sqrt{s} - M_T) + \frac{C}{2f^2} \frac{(\sqrt{s} - M_T)^2}{\sqrt{s} - M_{\text{eff}}}$$

$$M_{\text{eff}} = M_T - \frac{16\pi^2 f^2}{CM_T\Delta a}, \quad \Delta a = a_{\text{pheno}} - a_{\text{natural}}$$

Physically meaningful pole : $C > 0, \quad \Delta a < 0$

There is always a pole for $a_{\text{pheno}} \neq a_{\text{natural}}$

\rightarrow energy scale of the effective pole is relevant.
Pole of the full amplitude: physical state

\[z_1^{\Lambda^*} = 1429 - 14i \text{ MeV}, \quad z_2^{\Lambda^*} = 1397 - 73i \text{ MeV} \]

\[z^{N^*} = 1493 - 31i \text{ MeV} \]

Pole of the \(V_{WT} + \) natural: pure dynamical

\[z_1^{\Lambda^*} = 1417 - 19i \text{ MeV}, \quad z_2^{\Lambda^*} = 1402 - 72i \text{ MeV} \]

\[z^{N^*} = 1582 - 61i \text{ MeV} \]

\[\Rightarrow \Lambda(1405) \text{ is mostly dynamical state} \]
Structure of $\Lambda(1405)$ resonance

Pole in the effective interaction

$$T^{-1} = V_{ WT}^{-1} - G(a_{pheno}) = \left(V_{natural} \right)^{-1} - G(a_{natural})$$

Pole of the effective interaction (Meff) : pure CDD pole

$z_{\text{eff}}^{\Lambda^*} \sim 7.9$ GeV irrelevant!

$z_{\text{eff}}^{N^*} = 1693 \pm 37i$ MeV relevant?

Difference of interactions $\Delta V \equiv V_{\text{natural}} - V_{WT}$

\Rightarrow Important CDD pole contribution in $N(1535)$
Nc scaling in the model

Nc : number of color in QCD
Hadron effective theory / quark structure

The Nc behavior is known from the general argument.
<-- introducing Nc dependence in the model,
analyze the resonance properties with respect to Nc

Nc scaling of (excited)
qqq baryon

\[M_R \sim \mathcal{O}(N_c), \quad \Gamma_R \sim \mathcal{O}(1) \]

Result : \(\Gamma_R \neq \mathcal{O}(1) \)
~ non-qqq (i.e. dynamical) structure

Electromagnetic properties

Attaching photon to resonance
--> em properties : rms, form factors,...

Structure of Λ(1405) resonance
large (em) size of the Λ(1405) : c.f. -0.12 [fm2] for neutron
--> meson-baryon picture

result of mean squared radii :

$$|\langle r^2 \rangle_E| = 0.33 \ [fm^2]$$

Structure of Λ(1405) resonance

Summary: Chiral dynamics

Framework of chiral coupled-channel approach is reviewed.

Interaction given by chiral symmetry + coupled-channel unitarity condition

=> successful description of meson-baryon scattering and resonances.

On top of the successful reproduction of scattering data, the internal structure of resonances can be investigated in several ways.
The structure of the Λ(1405) is:

Dynamical or CDD?
=> dominance of the MB components

Analysis of Nc scaling
=> non-qqq structure

Electromagnetic properties
=> large e.m. size
The structure of the $\Lambda(1405)$ is:

- Dynamical or CDD?
 - \Rightarrow dominance of the MB components

- Analysis of Nc scaling
 - \Rightarrow non-qqq structure

- Electromagnetic properties
 - \Rightarrow large e.m. size

Independent analyses consistently support the meson-baryon molecule picture of the $\Lambda(1405)$