Λ*N bound state based on chiral dynamics

Tetsuo Hyodoa,
Toshitaka Uchinoa, and Makoto Okaa

\textit{Tokyo Institute of Technology}a
- $\bar{K}N$ interaction is strongly attractive $\leftarrow \Lambda(1405)$. Formation of deeply bound state is possible.

- Structure of the $\Lambda(1405)$, kaon condensation, ...

The simplest \bar{K}-nucleus: $\bar{K}NN$ three-body system
- $\bar{K}N$ interaction is strongly attractive \Leftarrow $\Lambda(1405)$. Formation of deeply bound state is possible.

- Structure of the $\Lambda(1405)$, kaon condensation, ...

The simplest \bar{K}-nucleus: $\bar{K}NN$ three-body system

Theory: rigorous few-body calculations with realistic interactions
- System **bounds**
 - Yamazaki-Akaishi, Shevchenko, et al.,
 - Ikeda-Sato, Doté et al., Wycech-Green,
- Quantitative **difference**: uncertainties in $\bar{K}N$ int. at far below threshold
Introduction

K in nuclei

- $\bar{K}N$ interaction is strongly attractive $\leftarrow \Lambda(1405)$. Formation of deeply bound state is possible.

- Structure of the $\Lambda(1405)$, kaon condensation, ...

The simplest \bar{K}-nucleus: $\bar{K}NN$ three-body system

Theory: rigorous few-body calculations with realistic interactions
- System **bounds**
 Yamazaki-Akaishi, Shevchenko, et al., Ikeda-Sato, Doté et al., Wycech-Green,
- Quantitative **difference:** uncertainties in $\bar{K}N$ int. at far below threshold

Experiments: some “evidences” in ΛN mass spectra
-FINUDA, DISTO, OBELIX, etc.
- Interpretation?
Regarding a $\bar{K}N$ pair as the $\Lambda^* = \Lambda(1405)$, construct the "$\Lambda^* N$ potential" with the meson-exchange picture.

Regarding a $\bar{K}N$ pair as the $\Lambda^* = \Lambda(1405)$, construct the “$\Lambda^* N$ potential” with the meson-exchange picture.

Λ^* seems to be surviving in $\bar{K}NN$ system.

Λ* hypernuclei model

Regarding a $\bar{K}N$ pair as the $\Lambda^* = \Lambda(1405)$, construct the “$\Lambda^*N$ potential” with the meson-exchange picture

Λ^* seems to be surviving in $\bar{K}NN$ system.

Λ^* coupling constants: unknown (← FINUDA data).
Regarding a $\bar{K}N$ pair as the $\Lambda^*=\Lambda(1405)$, construct the “Λ^*N potential” with the meson-exchange picture

\[\Lambda^* \] hypernuclei model

\[\Lambda^* \] seems to be surviving in $\bar{K}NN$ system.

Λ^* coupling constants: unknown (\(<--\) FINUDA data).

To determine the coupling and make predictions, we need a framework to describe the Λ^* \(<--\) chiral unitary approach
Chiral unitary approach

Description of $S = -1$, $\bar{K}N$ s-wave scattering : $\Lambda(1405)$ in $I=0$

- Interaction \leftarrow chiral symmetry

- Amplitude \leftarrow unitarity in coupled channels

Description of $S = -1$, $\overline{K}N$ s-wave scattering: $\Lambda(1405)$ in $l=0$

- Interaction \leftarrow chiral symmetry

- Amplitude \leftarrow unitarity in coupled channels

\[
T = \frac{1}{1 - VG} V
\]

\[\begin{array}{ccc}
\text{chiral} & = & \text{cutoff} \\
\end{array}\]

It works successfully, also in $S=0$ sector, meson-meson scattering sectors, systems including heavy quarks, ...
Chiral unitary approach

KN scattering: comparison with data

Total cross section of K-p scattering

Branching ratio

<table>
<thead>
<tr>
<th></th>
<th>γ</th>
<th>R<sub>c</sub></th>
<th>R<sub>n</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.</td>
<td>2.36</td>
<td>0.664</td>
<td>0.189</td>
</tr>
<tr>
<td>theo.</td>
<td>1.80</td>
<td>0.624</td>
<td>0.225</td>
</tr>
</tbody>
</table>

πΣ spectrum

Λ(1405)

KN scattering: comparison with data

Total cross section of K-p scattering

Branching ratio

<table>
<thead>
<tr>
<th></th>
<th>γ</th>
<th>R_c</th>
<th>R_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.</td>
<td>2.36</td>
<td>0.664</td>
<td>0.189</td>
</tr>
<tr>
<td>theo.</td>
<td>1.80</td>
<td>0.624</td>
<td>0.225</td>
</tr>
</tbody>
</table>

πΣ spectrum

Good agreement with data above, at, and below KN threshold

$\Lambda(1405)$ mass, width, couplings: prediction of the model
Chiral unitary approach

Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

\[T_{ij}(\sqrt{s}) \sim \frac{g_i g_j}{\sqrt{s} - M_R + i\Gamma_R/2} \]
Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

\[T_{ij}(\sqrt{s}) \sim \frac{g_i g_j}{\sqrt{s} - M_R + i\Gamma_R/2} \]

Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

\[T_{ij}(\sqrt{s}) \sim \frac{g_i g_j}{\sqrt{s} - M_R + i\Gamma_R / 2} \]

Physical \(\Lambda^* \): two poles

Chiral unitary approach

Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

\[T_{ij}(\sqrt{s}) \sim \frac{g_i g_j}{\sqrt{s - M_R + i \Gamma_R/2}} \]

Physical \(\Lambda^* \): two poles

short summary
- \(\Lambda(1405) \): \(\Lambda^*_1 \), \(\Lambda^*_2 \)
- \(\Lambda^*_i \) masses, widths, \(\Lambda^*_i \)-MB couplings predicted

\(\Rightarrow \Lambda^* \) hypernuclei based on chiral dynamics

$\Lambda^* N$ potential

$\Lambda^*_i N$ potential with one boson exchange ($i=1,2$)
Λ*N potential

Λ*N potential with meson-exchange picture

Λ*iN potential with one boson exchange (i=1,2)

○ NNσ, NNω couplings: Jülich (model A) YN potential
\(\Lambda^*N \) potential with meson-exchange picture

\(\Lambda^*_iN \) potential with one boson exchange (\(i=1,2 \))

- NN\(\sigma \), NN\(\omega \) couplings: Jülich (model A) YN potential
- \(\Lambda^*_iKN \) coupling: Chiral unitary approach
Λ*N potential

Λ*iN potential with one boson exchange (i=1,2)

- NNσ, NNω couplings: Jülich (model A) YN potential
- Λ*iKN coupling: Chiral unitary approach
- Λ*iΛ*iσ, Λ*iΛ*iω, couplings
 --> estimated by microscopic MB=(KN,πΣ,ηΛ) couplings
Λ*N potential

Λ*N potential with meson-exchange picture

Λ*iN potential with one boson exchange (i=1,2)

⊙ NNσ, NNω couplings: Jülich (model A) YN potential
⊙ Λ*iKN coupling: Chiral unitary approach
⊙ Λ*iΛ*iσ, Λ*iΛ*iω, couplings
 --> estimated by microscopic MB=(KN,πΣ,ηΛ) couplings
Λ*N potential with meson-exchange picture

Λ*N potential with one boson exchange (i=1,2)

- NNσ, NNω couplings: Jülich (model A) YN potential
- Λ*iKN coupling: Chiral unitary approach
- Λ*iΛ*iσ, Λ*iΛ*iω, couplings
 --- estimated by microscopic MB=(KN,πΣ,ηΛ) couplings

σ decay to ππ

\[g_{KKσ} = 0 \]
\[g_{ηησ} = 0 \]
Λ*N potential

Λ*N potential: K exchange

Λ*KN vertex: scalar type ($\Lambda^*=1/2^-$)

$$\mathcal{H}_{\Lambda^* NK} = g_{\Lambda^* KN} (\bar{\Lambda}^* \bar{K} N + \bar{N} K \Lambda^*)$$

Exchange factor
Λ*N potential

Λ*N potential: K exchange

Λ*KN vertex: scalar type (Λ*=1/2⁻)

\[\mathcal{H}_{\Lambda^* N K} = g_{\Lambda^* K N} (\overline{\Lambda^*} \overline{K} N + \overline{N} K \Lambda^*) \]

Exchange factor

\[-\mathcal{P}_x \frac{1 + \vec{\sigma}_{\Lambda^*} \cdot \vec{\sigma}_N}{2} \]

spin dependence
(P_x=1 for s-wave)

In total, S=0 (σσ=-3) attractive, S=1 (σσ=1) repulsive.
\(\Lambda^* N \) potential

\(\Lambda^* N \) potential: K exchange

\(\Lambda^* KN \) vertex: scalar type (\(\Lambda^* = 1/2^- \))

\[
\mathcal{H}_{\Lambda^* N K} = g_{\Lambda^* KN} (\bar{\Lambda}^* \bar{K} N + \bar{N} K \Lambda^*)
\]

Exchange factor

\[
- \mathcal{P}_x \frac{1 + \vec{\sigma}_{\Lambda^*} \cdot \vec{\sigma}_N}{2}
\]

spin dependence

(\(\mathcal{P}_x = 1 \) for s-wave)

In total, \(S=0 \) (\(\sigma \sigma = -3 \)) attractive, \(S=1 \) (\(\sigma \sigma = 1 \)) repulsive.

Mass difference of \(\Lambda^* \) and \(N \)

--> effective K mass

\[
\tilde{m}_K = \sqrt{m_K^2 - (M_{\Lambda^*} - M_N)^2}
\]

\(\Lambda^* N \) potential

\(\Lambda^* N \) potential: mixing interaction

Chiral unitary approach --> two \(\Lambda^* \) states : \(\Lambda^*_1, \Lambda^*_2 \)

With sufficient attraction, two \(\Lambda^* N \) bound states in \(B=2 \) system : \(\Lambda^*_1 N, \Lambda^*_2 N \)

There can be the mixing of \(\Lambda^*_1 N \) \(\leftrightarrow \) \(\Lambda^*_2 N \)
\(\Lambda^*N \) potential

\(\Lambda^*N \) potential: mixing interaction

Chiral unitary approach --> two \(\Lambda^* \) states : \(\Lambda^*_1, \Lambda^*_2 \)

With sufficient attraction,

two \(\Lambda^*N \) bound states in \(B=2 \) system : \(\Lambda^*_1N, \Lambda^*_2N \)

There can be the mixing of \(\Lambda^*_1N \leftrightarrow \Lambda^*_2N \)
Λ* potential

Λ*N potential: mixing interaction

Chiral unitary approach --> two Λ* states: Λ*₁, Λ*₂

With sufficient attraction, two Λ*N bound states in B=2 system: Λ*₁N, Λ*₂N

There can be the mixing of Λ*₁N <--→ Λ*₂N

No mixing With mixing

\[\bar{K}NN \]

\[\Lambda^*_2N \]

Binding Mixing

\[\Lambda^*_1N \]

Binding Mixing
\(\Lambda^* N \) potential: mixing interaction

Chiral unitary approach \(\rightarrow \) two \(\Lambda^* \) states : \(\Lambda^*_1, \Lambda^*_2 \)

With sufficient attraction, two \(\Lambda^* N \) bound states in \(B=2 \) system : \(\Lambda^*_1 N, \Lambda^*_2 N \)

There can be the mixing of \(\Lambda^*_1 N <--> \Lambda^*_2 N \)
\(\Lambda^*N \) potential: mixing interaction

Chiral unitary approach --> two \(\Lambda^* \) states: \(\Lambda^*_1, \Lambda^*_2 \)

With sufficient attraction, two \(\Lambda^*N \) bound states in \(B=2 \) system: \(\Lambda^*_1N, \Lambda^*_2N \)

There can be the mixing of \(\Lambda^*_1N \leftrightarrow \Lambda^*_2N \)
Numerical results for the $\Lambda^* N$ bound states

$\Lambda^* N$ potential

Diagonal potentials for $\Lambda^* 2N$ in $S=0$ and $S=1$, s-wave

\begin{align*}
S &= 0, \Lambda(1426) \\
S &= 1, \Lambda(1426)
\end{align*}
Numerical results for the $\Lambda\ast N$ bound states

$\Lambda\ast N$ potential

Diagonal potentials for $\Lambda\ast_2 N$ in $S=0$ and $S=1$, s-wave

$S=0$: K exchange is attractive
--> attractive pocket at intermediate range
Numerical results for the Λ*N bound states

Λ*N potential

Diagonal potentials for Λ*_2*N in S=0 and S=1, s-wave

S=0: K exchange is **attractive**

→ **attractive pocket** at intermediate range

S=1: K exchange is **repulsive**

→ no intermediate attraction.

(Short range dip: artificial, not physical)
Numerical results for the $\Lambda*N$ bound states

$\Lambda*N$ bound states without mixing

Solve the schrödinger equation for the s-wave Λ^*iN potential \textbf{without} the mixing interaction.
Numerical results for the Λ*N bound states

Λ*N bound states without mixing

Solve the schrödinger equation for the s-wave Λ*_i_N potential without the mixing interaction.

- no physical bound states in S=1 channels
Numerical results for the $Λ^*N$ bound states

$Λ^*N$ bound states without mixing

Solve the schrödinger equation for the s-wave $Λ^*_iN$ potential **without** the mixing interaction.

- no physical bound states in $S=1$ channels
- for $S=0$ we obtain the bound states in both $Λ^*_i$

<table>
<thead>
<tr>
<th>binding from</th>
<th>$Λ^*N$ th. [MeV]</th>
<th>$\bar{K}NN$ th. [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Λ^*_2 N$</td>
<td>13.39</td>
<td>22.39</td>
</tr>
<tr>
<td>$Λ^*_1 N$</td>
<td>0.34</td>
<td>45.34</td>
</tr>
</tbody>
</table>
Λ*N bound states without mixing

Solve the schrödinger equation for the s-wave Λ*iN potential without the mixing interaction.

- no physical bound states in S=1 channels
- for S=0 we obtain the bound states in both Λ*i

<table>
<thead>
<tr>
<th>binding from</th>
<th>Λ*N th. [MeV]</th>
<th>¯KNN th. [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ*2 N</td>
<td>13.39</td>
<td>22.39</td>
</tr>
<tr>
<td>Λ*1 N</td>
<td>0.34</td>
<td>45.34</td>
</tr>
</tbody>
</table>

Two Λ*N states in spin S=0 channel
Numerical results for the Λ*N bound states

Λ*N bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method ≈ changing the box size.

λ: strength of the mixing interaction, physical for λ=1
Numerical results for the Λ^*N bound states

Λ^*N bound states with mixing

With mixing, the higher state becomes a resonance.
Real scaling method \approx changing the box size.
λ: strength of the mixing interaction, physical for $\lambda=1$
Λ*N bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method ≈ changing the box size. λ: strength of the mixing interaction, physical for λ=1
Numerical results for the Λ^*N bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method ≈ changing the box size. λ: strength of the mixing interaction, physical for $\lambda=1$
With mixing, the higher state becomes a **resonance**. Real scaling method \approx changing the box size.

λ: strength of the mixing interaction, physical for $\lambda=1$
Numerical results for the $\Lambda^* N$ bound states with mixing

With mixing, the higher state becomes a **resonance**.

Real scaling method \approx changing the box size.

λ: strength of the mixing interaction, physical for $\lambda=1$
Numerical results for the Λ*N bound states

Λ*N bound states with mixing

With mixing, the higher state becomes a *resonance*. Real scaling method ≈ changing the box size.

λ: strength of the mixing interaction, physical for λ=1

The lower energy state bounds more. The higher energy state disappears (above Λ*2N threshold?)
We study the Λ^*N two-body system based on the Λ^*N potential with chiral dynamics.

Chiral unitary model: \textit{two states} Λ^*_1, Λ^*_2

Both Λ^*_i generate bound states with N in spin $S=0$ channels, \textit{<-- K exchange}.

With the mixing, \textit{lower states bounds more, and higher states dissolves.}

B.E.(from \bar{KNN}) = 52-58 MeV
\textit{<-- strong mixing between $\Lambda^*_1N - \Lambda^*_2N$}

\textbf{T. Uchino, T. Hyodo, M. Oka, in preparation}
Summary

taken from T. Uchino, Master thesis

Diagram showing the transition between No Mixing and With Mixing states. The transitions between states are indicated with energies: 13 MeV and 58 MeV. The states are labeled with symbols: $\bar{K}NN$, A_2^*N, and A_1^*N. The diagram also highlights transitions between states with energies of 0.3 MeV and 13 MeV.