Structure of hadron molecule resonance

Tetsuo Hyodoa,

Daisuke Jidob, and Atsushi Hosakac

Tokyo Institute of Technologya \quad YITP, Kyotob \quad RCNP, Osakac

supported by Global Center of Excellence Program
"Nanoscience and Quantum Physics"

2010, Mar. 23rd
Introduction

Classification of resonances

Resonances in two-body scattering

- Knowledge of interaction (potential)
- Experimental data (cross section, ...)

Dynamical state: two-body molecule, quasi-bound state, ...

![Diagram of two-body scattering]

- e.g.) Deuteron in NN, positronium in e^+e^-, ...

CDD pole: elementary particle, independent state, ...

![Diagram of CDD pole]

- e.g.) J/Ψ in e^+e^-, ...

Chiral unitary approach

Description of meson-baryon scattering, s-wave resonances

- Interaction <- chiral symmetry
- Amplitude <- unitarity (coupled channel)

\[T = \frac{1}{V^{-1} - G} \]

\[V \sim \text{interaction} : \text{ChPT at given order} \]
\[G \sim \text{loop function} : \text{subtraction constant (cutoff)} \]

.... many others

By construction, generated resonances are all dynamical? Not always...
CDD pole in subtraction constant?

Phenomenological (standard) scheme

--> V is given, “a” is determined by data

\[
T = \frac{1}{(V^{(1)})^{-1} - G(a)}
\]

leading order

\[
T = \frac{1}{(V^{(1)} + V^{(2)})^{-1} - G(a')}
\]

next to leading order

↑ pole ?

“a” represents the effect which is not included in V.

CDD pole contribution in G?

Natural renormalization scheme

--> fix “a” first, then determine V

to exclude CDD pole contribution from G, based on theoretical argument.
Natural renormalization scheme

Natural renormalization condition

Conditions for natural renormalization

- Loop function G should be negative below threshold.
- T matches with V at low energy scale.

“a” is uniquely determined such that

$$G(\sqrt{s} = M_T) = 0 \iff T(M_T) = V(M_T)$$

Matching with low energy interaction

Crossing symmetry (matching with u-channel amplitude)

We regard this condition as the exclusion of the CDD pole contribution from G.
Pole in the effective interaction: single channel

Leading order V: Weinberg-Tomozawa term

$$V_{WT} = -\frac{C}{2f^2}(\sqrt{s} - M_T)$$

C/f^2: coupling constant

no s-wave resonance

$$T^{-1} = V_{WT}^{-1} - G(a_{\text{pheno}}) = V_{\text{natural}}^{-1} - G(a_{\text{natural}})$$

\uparrow ChPT \uparrow data fit \uparrow given

Effective interaction in natural scheme

$$V_{\text{natural}} = -\frac{C}{2f^2}(\sqrt{s} - M_T) + \frac{C}{2f^2} \frac{(\sqrt{s} - M_T)^2}{\sqrt{s} - M_{\text{eff}}}$$

$M_{\text{eff}} = M_T - \frac{16\pi^2 f^2}{CM_T \Delta a}$, $a_{\text{pheno}} - a_{\text{natural}}$

There is always a pole for $a_{\text{pheno}} \neq a_{\text{natural}}$

- small deviation \iff pole at irrelevant energy scale
- large deviation \iff pole at relevant energy scale
Comparison of pole positions

Pole of the full amplitude: **physical state** ▲
Pole of the $V_{WT} +$ natural: pure **dynamical** +

\Rightarrow $\Lambda(1405)$ is mostly dynamical state

Physical interpretation of the renormalization condition?
- energy scale
- field renormalization constant Z

More about natural renormalization

Energy scale: matching with cutoff scheme at threshold

\[G^{3d}(M_T + m; q_{\text{max}}) = G^{\text{dim}}(M_T + m; a_{\text{natural}}) \]

For the pion, natural scheme (no CDD pole condition) requires a small cutoff

More about natural renormalization

Weinberg’s theorem for deuteron

“Evidence That the Deuteron Is Not an Elementary Particle”
S. Weinberg, Phys. Rev. 137 B672-B678, (1965)

Z: probability of finding deuteron in a bare elementary state

\[
|d\rangle = \sqrt{Z} |d_0\rangle + \sqrt{1-Z} \int dk |k\rangle
\]

\[
1 = |d_0\rangle \langle d_0| + \int dk |k\rangle \langle k|
\]

For a bound state with \textbf{small binding energy}, the following equation should be satisfied \textbf{model independently}:

\[
a_s = \left[\frac{2(1-Z)}{2-Z} \right] R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z} \right] R + \mathcal{O}(m_\pi^{-1})
\]

\(--\) Experiments (observables)

\[
a_s = +5.41[\text{fm}], \quad r_e = +1.75[\text{fm}], \quad R \equiv (2\mu_B)^{-1/2} = 4.31[\text{fm}]
\]

\[Z \lesssim 0.2 \quad \Rightarrow \text{deuteron is composite!}\]
Derivation of the theorem

The theorem is derived in two steps:

Step 1 (Sec. II): $Z \rightarrow p$-n-d coupling constant

\[g^2 = \frac{2\sqrt{B}(1 - Z)}{\pi \rho} \]

\[\rho = 4\pi \sqrt{2\mu^3} \]

Step 2 (Sec. III): coupling constant $\rightarrow a_s, r_e$

\[a_s = 2R \left[1 + \frac{2\sqrt{B}}{\pi \rho g^2} \right] \]

\[r_e = R \left[1 - \frac{2\sqrt{B}}{\pi \rho g^2} \right] \]

uncertainty for order $R = (2\mu B)^{1/2}$ quantity: m_π^{-1}

The coupling constant g^2 can be calculated in the chiral unitary approach $\implies Z$?

\rightarrow Consider single-channel problem with one bound state.
More about natural renormalization

Field renormalization constant

WT int., single channel, one bound state $\leftarrow M_B, a$

$$g^2(M_B; a) = -\frac{M_B - M_T}{G(M_B; a) + (M_B - M_T)G'(M_B)}$$

$$1 - Z = \sqrt{\frac{2mM_T}{(M_T + m)(M_T + m - M_B)}} \frac{M_T}{8\pi M_B} g^2(M_B; a)$$

1) $a = a_{\text{natural}}$, vary M_B

2) $M_B = 10$ MeV, vary a

natural scheme $\rightarrow Z \sim 0$

large deviation $\rightarrow Z \sim 1$
We study the origin (dynamical/CDD) of the resonances in the chiral unitary approach.

Natural renormalization scheme

Exclude CDD pole contribution from the loop function, consistent with N/D.

Comparison with phenomenology

--> **Pole** in the effective interaction

Λ(1405): predominantly dynamical
N(1535): dynamical + CDD pole

Summary: theoretical foundation of the natural scheme

Meaning of the natural scheme

Energy scale in 3d cutoff

for the light meson, natural scheme corresponds to a small 3d cutoff

Field renormalization constant Z: quantitative measure of “compositeness”

natural scheme corresponds to $Z \sim 0$