Determination of the a_0-a_2 Pion Scattering Length from $K^+ \rightarrow \pi^+\pi^0\pi^0$ Decay

(see also N. Cabibbo and G. Isidori, JHEP 03, 021 (2005))

Tetsuo Hyodoa,
Tokyo Institute of Technologya

supported by Global Center of Excellence Program “Nanoscience and Quantum Physics”

2010, Jul. 15th
Contents

Introduction -- hadron scattering length

Outline of the paper

Step1) Threshold cusp effect

Step2) Model for the one-loop amplitude

Step3) Extraction from experimental data

Summary + future plan
Scattering length

Scattering length: amplitude at threshold
- characterizes the low energy scattering
- changes the sign if there is a bound state

\[a = -f(k)|_{k \to 0} \]

\[\frac{d\sigma}{d\Omega} = |f(k)|^2, \quad \lim_{k \to 0} \sigma(k) = 4\pi a^2 \]

\[f = \frac{1}{k \cot \delta_0 - i k}, \quad k \cot \delta_0 = -\frac{1}{a} + r_e \frac{k^2}{2} + \ldots \]

\[\frac{d\sigma}{d\Omega} = |f(k)|^2, \quad \lim_{k \to 0} \sigma(k) = 4\pi a^2 \]

\[f = \frac{1}{k \cot \delta_0 - i k}, \quad k \cot \delta_0 = -\frac{1}{a} + r_e \frac{k^2}{2} + \ldots \]

J.J. Sakurai, Modern Quantum Mechanics, p. 415

(In hadron physics we usually adopt the opposite sign
--> positive for attraction, negative for repulsion)
Introduction -- hadron scattering length

Hadron scattering length measurement

Extraction of hadron scattering length
- **shift** and **width** of atomic state (coulomb bound state)
 - ex) Kaonic hydrogen

Problem: charged state only

- **extrapolation of phase shift**
 - ex) ππ scattering

Problem: uncertainty of the extrapolation

- threshold effect in the decay spectrum --> today’s topic
Cabibbo’s idea for $\pi\pi$ scattering length
- small isospin violation

\[m_{\pi^\pm} \sim m_{\pi^0} + 5 \text{ MeV} \]

--> charged $\pi\pi$ state is heavier than the neutral channel

- threshold cusp effect in the $\pi^0\pi^0$ spectrum

--> cusp appears at a higher energy threshold

- transition amplitude is proportional to a_0-a_2
Goal: to show the cusp in the $K \rightarrow \pi^+\pi^0\pi^0$ spectrum

There are two (or more) processes:

Step 1) Threshold cusp effect

The rescattering amplitude has an imaginary part for

$$s_{\pi\pi} > 4m_{\pi^\pm}^2$$
$$s_{\pi\pi} = (q_2 + q_1)^2 = (k - q_3)^2$$

So we divide the amplitude into two pieces

$$\mathcal{M}(K^+ \rightarrow \pi^+\pi^0\pi^0) = \mathcal{M}_0 + \mathcal{M}_1$$

such that

$$\mathcal{M}_1 = \begin{cases}
\text{pure imaginary} & s_{\pi\pi} > 4m_{\pi^\pm}^2 \\
0 & s_{\pi\pi} = 4m_{\pi^\pm}^2 \\
\text{real} & s_{\pi\pi} < 4m_{\pi^\pm}^2
\end{cases}$$
Step 1) Threshold cusp effect

Imaginary part of M_1 amplitude

Imaginary part of the loop function

$$G(s_{\pi\pi}) \sim \int_{4m_{\pi^\pm}^2}^{\infty} ds' \frac{\rho(s')}{s_{\pi\pi} - s' + i\epsilon}$$

$$\text{Im} \ G(s_{\pi\pi}) = -\rho(s_{\pi\pi}) = -\frac{p}{8\pi \sqrt{s_{\pi\pi}}} \propto -v \quad \text{for} \quad s_{\pi\pi} > 4m_{\pi^\pm}^2$$

\(p\): phase space, \(p\): three-momentum, \(v\): velocity

$$p = \sqrt{s_{\pi\pi} - 4m_{\pi^\pm}^2} \quad \frac{2}{2} , \quad v = \frac{p}{E} = \sqrt{s_{\pi\pi} - 4m_{\pi^\pm}^2} / s_{\pi\pi} , \quad E = \sqrt{s_{\pi\pi}}$$

We can then write the amplitude as

$$M_1 \propto J = \begin{cases} J_+ = -i\pi v & s_{\pi\pi} > 4m_{\pi^\pm}^2 \\ 0 & s_{\pi\pi} = 4m_{\pi^\pm}^2 \\ J_- = \pi \tilde{v} & s_{\pi\pi} < 4m_{\pi^\pm}^2 \end{cases}$$

analytic continuation of v
Threshold cusp in the spectrum

Amplitude of the process

\[M(K^+ \to \pi^+ \pi^0\pi^0) = M_0 + \boxed{M_1} \]

above threshold: imaginary
below threshold: real

real

The \(\pi^0\pi^0 \) invariant mass spectrum \((M_{\pi\pi} = \sqrt{s_{\pi\pi}})\)

\[\frac{d\Gamma}{dM_{\pi\pi}} \propto |M|^2 = \begin{cases} (M_0)^2 + (iM_1)^2 & s_{\pi\pi} > 4m_{\pi^\pm}^2 \\ (M_0)^2 + (M_1)^2 + 2M_0M_1 & s_{\pi\pi} < 4m_{\pi^\pm}^2 \end{cases} \]

- Spectrum is continuous

\[\lim_{s_{\pi\pi} \to 4m_{\pi^\pm}} M_1 = 0 \implies \lim_{+0} |M|^2 = \lim_{-0} |M|^2 \]

- Derivative of the spectrum is discontinuous

\[\lim_{-0} \frac{d}{dM_{\pi\pi}} |M|^2 - \lim_{+0} \frac{d}{dM_{\pi\pi}} |M|^2 = 2M_0 \frac{d}{dM_{\pi\pi}} M_1 \]

--> threshold cusp

It is purely kinematical effect, independent of the interaction.
Step 2) Model for the one-loop amplitude

Amplitude for the subprocesses

Goal: to construct the M_1 amplitude from one-loop graph

- Imaginary part \leftarrow loop function

$$M_1 \propto J$$

- Model for the K decay (essentially ChPT)

$$K^+ \to \pi^- + \pi^+ \sim M_+ = A^+_{av} \left(1 + \frac{g^+(s_{\pi\pi} - s_0)}{2m_{\pi^\pm}^2}\right)$$

$$s_0 = (M_K^3 + 3m_{\pi}^3)/3$$

parameters

- Rescattering amplitude (around threshold)

$$\pi^- \sim 16\pi(a_0 - a_2)m_{\pi^\pm}$$

isospin relation

$$a_{\pi^+\pi^- \to \pi^0\pi^0} = \frac{a_0 - a_2}{3}$$
Step 2) Model for the one-loop amplitude

M₁ amplitude

M₁ term from the one-loop amplitude

\[
M_{1} = -\frac{2(a_{0} - a_{2})m_{\pi^{\pm}}}{3} \cdot J \cdot M_{\pi^{\pm}}
\]

Using a model for M₀ amplitude, we can calculate the mass spectrum.

If \(a_{0} - a_{2} = 0 \), no rescattering (dashed line)
For finite \(a_{0} - a_{2} \) (solid), cusp appears.
Step 3) Extraction from experimental data

Experimental determination

Goal: to analyze the experimental spectrum without the model for the M_0 amplitude.

Region around threshold --> momentum expansion

$$|M|^2 = a + b\delta + c\delta^2 + O(\delta^3) \equiv F(\delta^2) + O(\delta^3)$$

$$\delta = \frac{\sqrt{4m_{\pi\pm}^2 - s_{\pi\pi}}}{2m_{\pi}} = \frac{p}{m_{\pi\pm}}$$

Using this expansion and the M_1 amplitude, it is possible to extract the scattering length $a_0 - a_2$.

Formulae:

$$\frac{d\Gamma}{dM_{\pi\pi}} \propto |M|^2 = \begin{cases} (M_0)^2 + (iM_1)^2 & s_{\pi\pi} > 4m_{\pi\pm}^2 \\ (M_0)^2 + (M_1)^2 + 2M_0M_1 & s_{\pi\pi} < 4m_{\pi\pm}^2 \end{cases}$$

$$M_1 = -\frac{2(a_0 - a_2)m_{\pi\pm}}{3} \cdot J \cdot M_+ \quad M_+ = A_{av}^+ \left(1 + \frac{g^+(s_{\pi\pi} - s_0)}{2m_{\pi\pm}^2}\right)$$
Step 3) Extraction from experimental data

Procedure for experimental analysis

Four steps for the experimental determination of \(a_0-a_2\)

1) Determine \(M_+\) by \(K \rightarrow \pi^+\pi^+\pi^-\) decay spectrum

\[
M_+ = A^+_\text{av} \left(1 + \frac{g^+ (s_{\pi\pi} - s_0)}{2m_{\pi^\pm}^2} \right) \quad \rightarrow \quad A^+_\text{av}, g^+ : \text{fixed}
\]

2) Fit the \(\pi^+\pi^0\pi^0\) spectrum above threshold by \(F(\delta^2)\)

\[
|M|^2_{\text{above}} = (M_0)^2 - (M_1)^2 = F(\delta^2) \quad \rightarrow \quad a, b, c : \text{fixed}
\]

3) Extract \(M_1\) from the \(\pi^+\pi^0\pi^0\) spectrum below threshold

\[
|M|^2_{\text{below}} = (M_0)^2 + (M_1)^2 + 2M_0M_1
\]

\[
= (M_0)^2 - (M_1)^2 + 2(M_1)^2 + 2[(M_0)^2 - (M_1)^2 + (M_1)^2]^{1/2}M_1
\]

\[
= F(\delta^2) + 2(M_1)^2 + 2[F(\delta^2) + (M_1)^2]^{1/2}M_1
\]

4) Calculate \(a_0-a_2\) from \(M_+\) and \(J\)

\[
M_1 = \frac{-2(a_0 - a_2)m_{\pi^\pm}}{3} \cdot J \cdot M_+
\]

This method does not require any model for \(M_0\)
Step 3) Extraction from experimental data

Experimental feasibility

Cusp is indeed seen in the experimental spectrum

A method to extract the $\pi\pi$ scattering length from the $K^+ \rightarrow \pi^+\pi^0\pi^0$ decay is discussed.

Isospin violation causes mass difference between charged and neutral pions.

Threshold cusp at $\pi^+\pi^-$ threshold is proportional to a^0-a^2 scattering length.

Experimental determination is possible with momentum expansion.

Higher order corrections:

N. Cabibbo and G. Isidori, JHEP 03, 021 (2005)
Summary + future plan

Determination of πΣ scattering length

Similar approach for πΣ scattering length?

T. Hyodo, M. Oka, work in progress

Σ⁺(~uus) < Σ⁰(~uds) < Σ⁻(~dds)

--> complicated spectrum

\[
\begin{align*}
\langle \pi^- Σ^+ | T | π^+ Σ^- \rangle |_{\text{threshold}} &= \frac{1}{3}a^0 - \frac{1}{2}a^1 + \frac{1}{6}a^2 \\
\langle π^0 Σ⁰ | T | π^+ Σ⁻ \rangle |_{\text{threshold}} &= \frac{1}{3}a^0 - \frac{1}{3}a^2 \\
\langle π^0 Σ⁺ | T | π^+ Σ⁰ \rangle |_{\text{threshold}} &= -\frac{1}{2}a^1 + \frac{1}{2}a^2
\end{align*}
\]
How to measure?
- \(\Lambda_c \rightarrow \pi \pi \Sigma \)

Branching fraction of the \(\Lambda_c \) decay (\(\Gamma_i/\Gamma \)) in PDG:
- \(\pi^+\Sigma^- \pi^+ \) (1.7%), \(\pi^-\Sigma^+ \pi^+ \) (3.6%), \(\pi^0\Sigma^0 \pi^+ \) (1.8%)

A lot of \(\Lambda_c \) in B decay (Belle, Babar) --> feasible?

Significance?
- Important constraint for \(K\pi-\pi\Sigma \) interaction at low energy
- Lower pole position of the \(\Lambda(1405) \) <-- sensitive to the \(\pi\Sigma \) scattering length

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.517</td>
<td>0.789</td>
<td>0.692</td>
<td>0.770</td>
<td>~ 5</td>
<td>1325 (V)</td>
<td></td>
</tr>
</tbody>
</table>