D-meson-nucleon interaction and DNN systems

Tetsuo Hyodo
Tokyo Institute of Technology

with M. Bayar, C.W. Xiao, A. Dote, M. Oka, E. Oset

supported by Global Center of Excellence Program “Nanoscience and Quantum Physics”
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>DN interaction and $\Lambda_c(2595)$</td>
</tr>
<tr>
<td>DNN quasi-bound state</td>
</tr>
<tr>
<td>• Variational calculation with DN potential</td>
</tr>
<tr>
<td>• FCA to Faddeev equation</td>
</tr>
<tr>
<td>Summary</td>
</tr>
</tbody>
</table>
Introduction

Conventions for heavy mesons

Convention of quantum number of quarks

<table>
<thead>
<tr>
<th></th>
<th>strange</th>
<th>charm</th>
<th>bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>-1</td>
<td>$+1$</td>
<td>-1</td>
</tr>
</tbody>
</table>

Heavy-light mesons: bar for negative flavor-ness ($q \sim u,d$)

<table>
<thead>
<tr>
<th></th>
<th>with \bar{q}</th>
<th>with q</th>
</tr>
</thead>
<tbody>
<tr>
<td>with \bar{q}</td>
<td>\bar{K} ($s\bar{q}$)</td>
<td>K ($s\bar{q}$)</td>
</tr>
<tr>
<td>with q</td>
<td>D ($c\bar{q}$)</td>
<td>\bar{D} ($c\bar{q}$)</td>
</tr>
</tbody>
</table>

$\bar{D}N \leftrightarrow KN$: exotic Θ^+, Ikeda’s talk

$DN \leftrightarrow \bar{K}N$: non-exotic light quark annihilation
Why DN and DNN?

Comparison with $\bar{K}N$ system in $I=0$ channel

$\bar{K}N$ vs. $\pi\Sigma_c$

$\Lambda^*(1405)$

~ 100 MeV

$\sim 15-30$ MeV

~ 210 MeV

~ 200 MeV

- large mass splitting between DN and $\pi\Sigma_c$
- narrow negative parity Λ_c^*, analogous to $\Lambda(1405)$?

Λ^*: a $\bar{K}N$ bound state in the $\pi\Sigma$ continuum --> \bar{K} nuclei
Λ_c^*: a DN bound state in the $\pi\Sigma_c$ continuum --> D nuclei?
Can Λ_c^* (with large binding) be a DN quasi-bound state?

- D (1867 MeV) is heavier than \bar{K} (496 MeV). **Kinetic energy is suppressed.**
 If the DN interaction were the same with $\bar{K}N$, system would develop a deeper quasi-bound state.

- Vector meson exchange picture leads to a **stronger** DN interaction than $\bar{K}N$ at threshold

 \[
 \frac{V_D}{V_K} = \frac{m_D}{m_K} \sim 3.8 \quad \text{(next slide)}
 \]

DN system can generate a **strongly bound state**: Λ_c^*.
Vector meson exchange for DN

DN ($\bar{K}N$) interaction in vector meson exchange (low energy)

\[
V \sim g\bar{u}\gamma^\mu u \times \frac{1}{k^2 - m_v^2} \left[g_{\mu\nu} - \frac{k_\mu k_\nu}{m_v^2} \right] \times g(q + q')^\nu
\]

\[
\rightarrow -\bar{u}\gamma^\mu u \left(\frac{g^2}{m_v^2} g_{\mu\nu} (q + q')^\nu \right) (k \ll m_v)
\]

\[
\rightarrow -\frac{1}{2f^2} \bar{u}(\not{q} + \not{q'}) u \quad \text{(KSRF relation)}
\]

\[
\rightarrow -\frac{1}{2f^2} (q^0 + q'^0) \quad \text{(nonrel. leading)}
\]

\[
\rightarrow -\frac{m}{f^2} \quad \text{(at threshold)}
\]

Interaction in DN-$\pi\Sigma_c$ system

\[
V \sim \begin{pmatrix}
-3m_D \\
\sqrt{\frac{3}{2} \kappa_c \frac{m_D + m_\pi}{2}} \\
\sqrt{\frac{3}{2} \kappa_c \frac{m_D + m_\pi}{2}} - 4m_\pi
\end{pmatrix}
\]

- strong DN interaction \rightarrow large binding energy
- suppressed off-diagonal coupling \rightarrow narrow width of Λ_c^*
Coupled-channel DN (πΣ_c, ηΛ_c, KΞ_c, KΞ_c', D_sΛ, η'Λ_c) scattering

Subtraction constants (cutoff parameters) are chosen to reproduce Λ_c* in I=0. Apply the same constants to I=1.

A resonance at ~ 2760 MeV is generated in I=1 channel.
c.f. PDG 1*: Λ_c*(2765) or Σ_c*(2765) ??
DN interaction and \(\Lambda_c(2595) \)

DN local potential

Equivalent single-channel local potential

\[
v_{DN}(r; W) = \frac{M_N}{2\pi^{3/2}a_s^3\tilde{\omega}(W)} [v^{\text{eff}}(W) + \Delta v(W)] \exp[-(r/a_s)^2]
\]

- reproduces the coupled channel amplitude

This potential reproduces the DN amplitude in CC model.
Larger (smaller) real (imaginary) part than \(\bar{K}N \)
Strategy for DNN bound state

Coupled-channel model
DN amplitude, \(\Lambda_c(2595) \)

DN single-channel potential

- Structure from wave function
- NN dynamics is dynamically solved.

Fixed-center approximation to Faddeev equation

- Two-body absorption
- Imaginary part of the amplitude is treated.

Assume NN distribution

Coupled-channel \((\pi Y_c N)\) effect is partly included.

DNN quasi-bound state
Variational calculation: setup

Quantum number: I=1/2, J^P=0-, 1-

- J^P=0- “D+nn”
 - S_{NN}=0
 - I_{NN}=1 (s-wave) --> DN(I=0):DN(I=1) = 3:1

- J^P=1- “D+d”
 - S_{NN}=1
 - I_{NN}=0 (s-wave) --> DN(I=0):DN(I=1) = 1:3

Two-body interactions

- DN imaginary part is neglected
- energy dependence is fixed at Λ_c* (I=1 QBS disappears)
- three kinds of NN forces (Av18, HN1R, Minnesota)
DNN quasi-bound state

Variational calculation: results

Results of the DNN system

- J=0 bound, J=1 unbound w.r.t. [DN]N
- mesonic decay width is small
- softer the core, larger the binding

<table>
<thead>
<tr>
<th></th>
<th>HN1R</th>
<th>Minnesota</th>
<th>Av18</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unbound</td>
<td>208</td>
<td>225</td>
<td>251</td>
</tr>
<tr>
<td>bound</td>
<td>3537</td>
<td>3520</td>
<td>3494</td>
</tr>
<tr>
<td>(J = 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>208</td>
<td>225</td>
<td>251</td>
</tr>
<tr>
<td>(M_B)</td>
<td>3537</td>
<td>3520</td>
<td>3494</td>
</tr>
<tr>
<td>(\Gamma_{\pi Y_c N})</td>
<td>-</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>(E_{\text{kin}})</td>
<td>338</td>
<td>352</td>
<td>438</td>
</tr>
<tr>
<td>(V(NN))</td>
<td>0</td>
<td>-2</td>
<td>19</td>
</tr>
<tr>
<td>(V(DN))</td>
<td>-546</td>
<td>-575</td>
<td>-708</td>
</tr>
<tr>
<td>(T_{\text{nuc}})</td>
<td>113</td>
<td>126</td>
<td>162</td>
</tr>
<tr>
<td>(E_{NN})</td>
<td>113</td>
<td>124</td>
<td>181</td>
</tr>
<tr>
<td>(P(\text{Odd}))</td>
<td>75.0 %</td>
<td>14.4 %</td>
<td>7.4 %</td>
</tr>
</tbody>
</table>

209-251 MeV

1-43 MeV

Isospin decomposition of DN two-body correlation

\[\rho_{DN}(x) = \langle \Psi | \sum_{i=1,2} \delta^3(|\mathbf{r}_D - \mathbf{r}_i| - x) | \Psi \rangle \]

DN (I=0) correlation is similar to \(\Lambda_c^* \)
DNN quasi-bound state

FCA calculation

Fixed-center approximation to Faddeev equation

- Complex DN amplitude
- all two-body pairs are in s-wave
- NN distribution is assumed
 (chosen to be smaller than the deuteron)
DNN quasi-bound state

FCA calculation: two-body absorption

Two-body absorption --> imaginary part of DN amplitude

\[
g_{DN} \rightarrow g_{DN} + i \text{Im} \delta \tilde{g}
\]

DN loop
two-body absorption contribution

\[
\text{ Re } \quad \text{ Im }
\]

\[
\text{s}_{1/2} \text{[MeV]}
\]

\[
2200 \quad 2300 \quad 2400 \quad 2500 \quad 2600 \quad 2700 \quad 2800 \quad 2900 \quad 3000
\]
DNN quasi-bound state

FCA calculation: result

Magnitude of the three-body amplitude square

\[J=0 \]

\[J=1 \]

J=0 channel: \(M \sim 3500 \text{ MeV} \)
- strong signal, consistent with the variational calculation

J=1 channel: \(M \sim 3500 \text{ MeV} \) and \(M \sim 3700 \text{ MeV} \)?
- week signal, not found in the variational calculation??
- \(l=1 \) DN interaction is important for this channel.
Possible experiments

Antiproton beam

\[\bar{p} + ^3\text{He} \rightarrow \bar{D}^0 D^0 pn \rightarrow \bar{D}^0 [DNN] \]

- PANDA?

Pion beam

\[\pi^- + d \rightarrow D^- D^+ np \rightarrow D^- [DNN] \]

\[\pi^- + d \rightarrow D^- \Lambda_c^+ n \rightarrow D^- [DNN] \]

- J-PARC high momentum beamline?

Heavy Ion collision

Coalescence DNN, \(\Lambda_c^* N \)

- RHIC, LHC,...

We study DN interaction and DNN system

DN interaction is constructed by regarding Λ_{c}^{*} as “DN quasi-bound state”.

A narrow DNN quasi-bound state in spin $J=0$ channel.

$B_{\text{DNN}} \sim 250$ MeV, $B_{\Lambda_{c}^{*}N} \sim 40$ MeV

$\Gamma \sim 20$-40 MeV

DN interaction in $I=1$ channel (negative parity Σ_{c}^{*}) is important for $J=1$ result.

M. Bayar et al., arXiv:1205.2275 [hep-ph]