DN interaction, $\Lambda_c(2595)$, and DNN quasi-bound state

Tetsuo Hyodo
Tokyo Institute of Technology
with M. Bayar, C.W. Xiao, A. Dote, M. Oka, E. Oset

supported by Global Center of Excellence Program “Nanoscience and Quantum Physics”
Contents

- Introduction
- DN interaction and $\Lambda_c(2595)$
- DNN quasi-bound state
 - Variational calculation with DN potential
 - FCA to Faddeev equation
- Summary
Conventions for heavy mesons

Convention of quantum number of quarks

<table>
<thead>
<tr>
<th></th>
<th>strange</th>
<th>charm</th>
<th>bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

Heavy-light mesons: bar for negative flavor-ness (q~u,d)

<table>
<thead>
<tr>
<th></th>
<th>with (\bar{q})</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{K}) (s(\bar{q}))</td>
<td>D (c(\bar{q}))</td>
<td>(\bar{B}) (b(\bar{q}))</td>
</tr>
<tr>
<td></td>
<td>(K) (s(q))</td>
<td>(\bar{D}) (c(q))</td>
<td>(B) (b(q))</td>
</tr>
</tbody>
</table>

\(\text{DN} \leftrightarrow \bar{K}N\) : non-exotic light quark annihilation

\(\bar{D}N \leftrightarrow KN\) : exotic \(\Theta^+\), Yasui-Sudoh
Why DN and DNN?

Comparison with $\bar{K}N$ system in l=0 channel

- Large mass splitting between DN and $\pi\Sigma_c$
- Narrow negative parity Λ_c^*, analogous to $\Lambda(1405)$?

Λ^*: a $\bar{K}N$ bound state in the $\pi\Sigma$ continuum --> \bar{K} nuclei
Λ_c^*: a DN bound state in the $\pi\Sigma_c$ continuum --> D nuclei? (c.f. conventionally, $\Lambda_c^* \sim 3$-quark state)
Can Λ_c^* (with large binding) be a DN quasi-bound state?

- D (1867 MeV) is heavier than \bar{K} (496 MeV). Kinetic energy is suppressed. If the DN interaction were the same with $\bar{K}N$, system would develop a deeper quasi-bound state.

- Vector meson exchange picture leads to a stronger DN interaction than $\bar{K}N$ at threshold

$$\frac{V_D}{V_K} = \frac{m_D}{m_K} \sim 3.8$$

DN system can generate a strongly bound state: Λ_c^*.

DN interaction and $\Lambda_c(2595)$
Vector meson exchange for DN

DN (KN) interaction in vector meson exchange (low energy)

\[V \sim g \bar{u} \gamma^\mu u \times \frac{1}{k^2 - m_v^2} \left[g_{\mu\nu} - \frac{k_\mu k_\nu}{m_v^2} \right] \times g(q + q')^\nu \]

\[\rightarrow -\bar{u} \gamma^\mu u \frac{g^2}{m_v^2} g_{\mu\nu} (q + q')^\nu \quad (k \ll m_v) \]

\[\rightarrow -\frac{1}{2f^2} \bar{u}(\psi + \psi') u \quad \text{(KSRF relation)} \]

\[\rightarrow -\frac{1}{2f^2} (q^0 + q^{0'}) \quad \text{(nonrel. leading)} \]

\[\rightarrow -\frac{m}{f^2} \quad \text{(at threshold)} \]

Interaction in DN-πΣ_c system

\[V \sim \left(\begin{array}{c} -3m_D \\ \sqrt{\frac{3}{2}} \kappa_c \frac{m_D + m_\pi}{2} \\ \frac{3}{2} \kappa_c \frac{m_D + m_\pi}{2} \\ -4m_\pi \end{array} \right) \]

- strong DN interaction --> large binding energy
- suppressed off-diagonal coupling --> narrow width of Λ_c^*
Coupled-channel DN ($\pi\Sigma_c$, $\eta\Lambda_c$, $K\Xi_c$, $K\Xi_c'$, $D_s\Lambda$, $\eta'\Lambda_c$) scattering see T. Mizutani, A. Ramos, Phys. Rev. C74, 065201 (2006)

Subtraction constants (cutoff parameters) are chosen to reproduce Λ_c^* in $I=0$. Apply the same constants to $I=1$.

A resonance at ~ 2760 MeV is generated in $I=1$ channel.
c.f. PDG 1*: $\Lambda_c^*(2765)$ or $\Sigma_c^*(2765)$??
DN local potential

Equivalent single-channel local potential

\[
v_{DN}(r; W) = \frac{M_N}{2\pi^{3/2}a_s^3\tilde{\omega}(W)} \left[v^{\text{eff}}(W) + \Delta v(W) \right] \exp[-(r/a_s)^2]
\]

- reproduces the coupled channel amplitude

This potential reproduces the DN amplitude in CC model.

Larger (smaller) real (imaginary) part than \(\bar{K}N\)
Our model space: meson-baryon channels. No bare field.

- Is the quasi-bound state a DN molecule?

No. Pole contribution can be hidden in the cutoff.

\[
T = \frac{1}{(V^{(1)})^{-1} - G(a)}
\]

\[
T = \frac{1}{(V^{(1)} + V^{(2)})^{-1} - G(a')}
\]

↑ pole

Once the cutoff parameter is chosen to reproduce data, it can play a role of bare field as well as other coupled channels (πΣ_c^*, D*N, etc.), which are not included in the model space.
Strategy for DNN bound state

Coupled-channel model
DN amplitude, $\Lambda_c(2595)$

DN single-channel potential

real part

Three-body variational calculation
- Structure from wave function
- NN dynamics is dynamically solved.

Fixed-center approximation to Faddeev equation
- Two-body absorption
- Imaginary part of the amplitude is treated.

Assume NN distribution

Coupled-channel ($\pi Y_c N$) effect is partly included.
DNN quasi-bound state

Variational calculation: setup

Quantum number: $I=1/2$, $J^P=0^-, 1^-$

- $J^P=0^-$ “D$^+$nn”

 $S_{NN}=0$

 $I_{NN}=1$ (s-wave) --> $\text{DN}(I=0) : \text{DN}(I=1) = 3:1$

- $J^P=1^-$ “D$^+$d”

 $S_{NN}=1$

 $I_{NN}=0$ (s-wave) --> $\text{DN}(I=0) : \text{DN}(I=1) = 1:3$

Two-body interactions

- DN imaginary part is neglected
- energy dependence is fixed at Λ_c^* ($I=1$ QBS disappears)
- three kinds of NN forces (Av18, HN1R, Minnesota)
Results of the DNN system

- J=0 bound, J=1 unbound w.r.t. [DN]N
- mesonic decay width is small
- softer the core, larger the binding

<table>
<thead>
<tr>
<th></th>
<th>HN1R</th>
<th>Minnesota</th>
<th>Av18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(J=1)</td>
<td>(J=0)</td>
<td>(J=0)</td>
</tr>
<tr>
<td>(B)</td>
<td>bound</td>
<td>bound</td>
<td>bound</td>
</tr>
<tr>
<td>(B)</td>
<td>208</td>
<td>225</td>
<td>251</td>
</tr>
<tr>
<td>(M_B)</td>
<td>3537</td>
<td>3520</td>
<td>3494</td>
</tr>
<tr>
<td>(\Gamma_{\pi Y_c N})</td>
<td>-</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>(E_{\text{kin}})</td>
<td>338</td>
<td>352</td>
<td>438</td>
</tr>
<tr>
<td>(V(\text{NN}))</td>
<td>0</td>
<td>-2</td>
<td>19</td>
</tr>
<tr>
<td>(V(\text{DN}))</td>
<td>-546</td>
<td>-575</td>
<td>-708</td>
</tr>
<tr>
<td>(T_{\text{nuc}})</td>
<td>113</td>
<td>126</td>
<td>162</td>
</tr>
<tr>
<td>(E_{NN})</td>
<td>113</td>
<td>124</td>
<td>181</td>
</tr>
<tr>
<td>(P(\text{Odd}))</td>
<td>75.0 %</td>
<td>14.4 %</td>
<td>7.4 %</td>
</tr>
</tbody>
</table>

Variational calculation: results

DNN quasi-bound state

209-251 MeV

209-251 MeV

1-4.3 MeV
DNN quasi-bound state

Variational calculation: DN correlation

Isospin decomposition of DN two-body correlation

$$\rho_{DN}(r) = \langle \Psi \mid \sum_{i=1,2} \delta^3(\mid r_D - r_i \mid - r) \mid \Psi \rangle$$

DN (I=0) correlation is similar to Λ_c^*
Fixed-center approximation to Faddeev equation

- Complex DN amplitude
- all two-body pairs are in s-wave
- NN distribution is assumed
 (chosen to be smaller than the deuteron)
FCA calculation: two-body absorption

Two-body absorption --> imaginary part of DN amplitude

\[g_{DN} \rightarrow g_{DN} + i \text{Im} \delta \tilde{g} \]

DN loop

two-body absorption contribution

DNN quasi-bound state

Re

Im

FIG. 4. Form factor of the deuteron, and the one correspond-

Fig. 5 (other mechanisms and decay channels will be dis-

instrumenting the

system. Yet, there are limits

system more compact,

\[s_{1/2}^2 \approx 0 \] t he wave function \(\tilde{\Lambda} \)

accounted for at the end of the formalism.

 integrating, and make a change of the spatial variables

Defining of

\[\alpha \]

for the

amplitude,

\[\tilde{\Lambda} \]

inspecting of Fig. 8, together with the values of

This leads to the expression of the coupling of the reso-

For a narrow resonance, we can approximate the am-

\[\delta \tilde{g} \]

two-body

\[\text{Im} \delta \tilde{g} \]

\[g_{DN} \rightarrow g_{DN} + i \text{Im} \delta \tilde{g} \]

two-body absorption contribution

\[s_{1/2}^2 \approx 0 \] t he wave function \(\tilde{\Lambda} \)

accounted for at the end of the formalism.

 integrating, and make a change of the spatial variables

Defining of

\[\alpha \]

for the

amplitude,
DNN quasi-bound state

FCA calculation: result

Magnitude of the three-body amplitude square

\[|T| \]

J=0 channel: \(M \sim 3500 \text{ MeV} \)
- strong signal, **consistent with the variational calculation**

J=1 channel: \(M \sim 3500 \text{ MeV} \) and \(M \sim 3700 \text{ MeV} \)?
- week signal, not found in the variational calculation??
- \(I=1 \) DN interaction is important for this channel.
Possible experiments

Antiproton beam

\[\bar{p} + ^3\text{He} \rightarrow \bar{D}^0 D^0 pn \rightarrow \bar{D}^0 [DNN] \]

- PANDA?

Pion beam

\[\pi^- + d \rightarrow D^- D^+ np \rightarrow D^- [DNN] \]

\[\pi^- + d \rightarrow D^- \Lambda_c^+ n \rightarrow D^- [DNN] \]

- J-PARC high momentum beamline?

Heavy Ion collision

Coalescence DNN (large binding), \(\Lambda_c^* N \) (small binding)

- RHIC, LHC,...

We study DN interaction and DNN system

DN interaction is constructed by regarding Λ_c^* as “DN quasi-bound state”.

A narrow DNN quasi-bound state in spin $J=0$ channel.

$B_{\text{DNN}} \sim 250 \text{ MeV}, \quad B_{\Lambda_c^*N} \sim 40 \text{ MeV}$

$\Gamma \sim 20-40 \text{ MeV}$

DN forms a compact cluster, but Λ_c^*N bounds loosely.

M. Bayar et al., arXiv:1205.2275 [hep-ph]