Meson-induced pentaquark productions

Tetsuo Hyodoa, Atsushi Hosakab, and Makoto Okaa

Tokyo Institute of Technologya RCNP, Osakac

supported by Global Center of Excellence Program “Nanoscience and Quantum Physics”

2012, Sep. 11th
Introduction

Pentaquark Θ+

Θ+ : strangeness $S = +1$, baryon number $B = 1$

minimal quark content $\sim uudd\bar{s}$: exotic!

$\gamma d \rightarrow K^{+}K^{-}pn$ reaction

New results from LEPS

Y. Kato, Talk at FB20

- K^+, K^- detected. momentum of n is determined by MMSA.
- significance of the peak in new data: 1.6-1.9 σ
- event selection by start counter: peak grows
Experiment at J-PARC

J-PARC E19: $\pi^- p \rightarrow K^- X$, first result from J-PARC hadron hall

12pSL-10 M. Moritsu, et al.,

- Cross section $< 0.26 \mu b/sr$

Impact on the existence of Θ^+? --> theoretical analysis
Meson-induced Θ^+ production

Theoretical study of reactions

Meson-induced Θ^+ production: relatively simple

Effective Lagrangian approach \rightarrow upper limit of Γ_Θ

We examine isospin $I=0$, spin-parity $J^P=1/2^\pm$, $3/2^\pm$ cases.

- Born terms (must exist if Θ^+ decays into KN)

- Other possible contributions: unknown couplings

Born terms only $\rightarrow \sigma$ is proportional to Γ_Θ
Meson-induced Θ+ production

Interference with other contributions

Our aim: upper limit of cross section --> upper limit of Γ_Θ

- Destructive interference --> underestimation

\[
\sigma \propto |T_{\text{Born}}|^2 = \left| \bar{T}_{\text{Born}} \sqrt{\Gamma_\Theta} \right|^2 < 1
\]

\[
\sigma \propto \left| \bar{T}_{\text{Born}} \sqrt{\Gamma_\Theta} + T_{\text{other}} \right|^2 < 1
\]

Interference pattern in general depends on the reaction.

- Negative result in *various* low energy reactions
 \((\pi^-p \rightarrow K^-X, \ K^+p \rightarrow \pi^+X, \ pp \rightarrow \Sigma^+X, \ \gamma p \rightarrow K^0X, ...\)

It is unnatural that all the negative results are explained by destructive interference.

--> Born diagrams will provide a **conservative upper limit**.
Meson-induced Θ^+ production

Total cross sections

Theoretical uncertainties:
- two schemes of meson-baryon coupling (PV, PS)
- two types of hadron form factor (Fs, Fc)

Total cross sections with $J^P=1/2^+$ case ($\Gamma_\Theta = 1$ MeV)

- Threshold behavior of PS is different from PV.
 --> chiral low energy theorem
Meson-induced Θ+ production

Total cross sections for various quantum numbers

Upper limit in experiments (isotropic production)
- J-PARC E19: $\pi^- p \rightarrow K^- \Theta^+ \sigma \lesssim 10^{-1} \text{ mb}$
- KEK E559: $K^+ p \rightarrow \pi^+ \Theta^+ \sigma \lesssim 10^0 \text{ mb}$

Total cross sections at experimental energies ($\Gamma_\Theta = 1 \text{ MeV}$)

<table>
<thead>
<tr>
<th>J^P</th>
<th>$\pi^- p \rightarrow K^- \Theta^+$</th>
<th>$K^+ p \rightarrow \pi^+ \Theta^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 1/2^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>PS</td>
<td>PV</td>
</tr>
<tr>
<td>covariant</td>
<td>9.2 $^{+1.4}_{-1.3}$</td>
<td>0.51 $^{+0.07}_{-0.08}$</td>
</tr>
<tr>
<td></td>
<td>5.3 $^{+2.8}_{-2.0}$</td>
<td>0.29 $^{+0.16}_{-0.11}$</td>
</tr>
<tr>
<td>$= 1/2^-$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>PV</td>
<td>PS</td>
</tr>
<tr>
<td>covariant</td>
<td>0.18 $^{+0.02}_{-0.03}$</td>
<td>0.40 $^{+0.06}_{-0.06}$</td>
</tr>
<tr>
<td></td>
<td>0.10 $^{+0.06}_{-0.04}$</td>
<td>0.23 $^{+0.12}_{-0.09}$</td>
</tr>
<tr>
<td>$= 3/2^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>PS</td>
<td>PV</td>
</tr>
<tr>
<td>covariant</td>
<td>10 $^+2_{-1}$</td>
<td>94 $^{+11}_{-11}$</td>
</tr>
<tr>
<td></td>
<td>5.9 $^{+3.1}_{-2.2}$</td>
<td>478 $^{+12}_{-14}$</td>
</tr>
<tr>
<td>$= 3/2^-$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>PV</td>
<td>PS</td>
</tr>
<tr>
<td>covariant</td>
<td>5.5 $^{+0.8}_{-0.8}$</td>
<td>8572 $^{+1019}_{-992}$</td>
</tr>
<tr>
<td></td>
<td>3.2 $^{+1.6}_{-1.2}$</td>
<td>40544 $^{+1511}_{-1824}$</td>
</tr>
</tbody>
</table>

If we consider the width should be larger than 0.1 MeV; --> spin 3/2 cases are ruled out.
Differential cross section at $P_{\text{lab}} = 1.92$ GeV ($\Gamma_\Theta = 1$ MeV)

Comparison with J-PARC data

- Angular dependence is not so strong.
 - J-PARC E19 experiment: K^+ detected in forward angles.

J-PARC experiment --> upper limit of Γ_Θ

- (narrow width of $1/2^-$ is theoretically unreasonable)
We study pentaquark productions in meson-induced reactions with Born diagrams.

Cross sections for $J^P = 1/2^\pm, 3/2^\pm$ cases.

Spin $3/2$ cases --> large cross section

$\Gamma_\Theta << 0.1$ MeV: unlikely for hadrons

Spin $1/2$ cases may be possible.

upper limit of Γ_Θ with J-PARC exp.