Exotic hadrons and emergent long range force in QCD

Tetsuo Hyodo
Yukawa Institute for Theoretical Physics, Kyoto Univ.

2018, Jul. 4th
Introduction

Classification of hadrons

Observed hadrons

PDG2018: http://pdg.lbl.gov/

Only **color singlet** states are observed.

→ Color confinement problem

Flavor quantum numbers are described by $qqq/q\bar{q}$.

Why no $qq\bar{q}\bar{q}$, $qqqq\bar{q}$, ... states (exotic hadrons)?

→ Exotic hadron problem, as not trivial as confinement!

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda(1600)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(1610)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(1620)$</td>
<td>$5/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(1630)$</td>
<td>$5/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(1650)$</td>
<td>$3/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(1800)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(2000)$</td>
<td>$7/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(2050)$</td>
<td>$7/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(2100)$</td>
<td>$5/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(2250)$</td>
<td>$3/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda(2550)$</td>
<td>$9/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(1600)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(1610)$</td>
<td>$3/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(1620)$</td>
<td>$3/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(1650)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(1800)$</td>
<td>$0^+(2500)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(1900)$</td>
<td>$0^+(2700)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(2000)$</td>
<td>$0^+(2900)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(2100)$</td>
<td>$0^+(3100)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(2250)$</td>
<td>$0^+(3500)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(2550)$</td>
<td>$0^+(3700)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(3170)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Xi(1600)$</td>
<td>$0^+(2500)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Xi(1900)$</td>
<td>$0^+(2700)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Xi(2000)$</td>
<td>$0^+(2900)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Xi(2100)$</td>
<td>$0^+(3100)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Xi(2250)$</td>
<td>$0^+(3500)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Xi(2550)$</td>
<td>$0^+(3700)$</td>
<td>$1/2^+$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

~ 150 baryons

~ 210 mesons

All ~ 360 hadrons emerge from single QCD Lagrangian.
Two-body potential

\[V(r) \propto \frac{1}{r} : \text{long (infinite) range} \]

\[V(r) \propto e^{-mr}/r : \text{finite (\sim 1/m) range} \]

Hadron-hadron interaction is considered to be finite range.

- Longest interaction range
 \(<— \text{exchange of lightest particle } (\pi) \sim 1 \text{ fm}\)

- Absence of the long range force is the basis for the (standard) scattering theory, Lüscher/HAL method, etc.

There can be (quasi) long range force beyond 1 fm.

Emergence of long range force

Low energy NN interaction: π exchange

- Static approx. $p^\mu = (M_N, p), \quad p'^\mu = (M_N, p'), \quad q^\mu = p'^\mu - p^\mu = (0, q)$

- Coupling $g\bar{N}i\gamma_5\pi N \sim g\chi^\dagger \sigma \cdot q\chi$ (isospin ignored)

Potential

$$V(r) \sim \text{F.T.} \left\{ g^2 (\sigma_1 \cdot q)(\sigma_2 \cdot q) \frac{-1}{q^2 + m^2_{\pi}} \right\}$$

Tensor op. Yukawa $e^{-m_{\pi}r} \frac{r}{r}$
Emergence of long range force

NN* potential (exchange)

\[\text{NN}^*(J^P=1/2^-) \text{ interaction} \]

\[\begin{align*}
N^*(k) & \rightarrow N(k') \\
\pi(q) & \\
N(p) & \rightarrow N^*(p') \\
\end{align*} \]

Mass difference
\[\Delta = M_{N^*} - M_N \]

- **Static approx.**
\[p^\mu = (M_N, p), \quad p'^\mu = (M_{N^*}, p'), \quad q^\mu = (\Delta, q) \]

- **Coupling**
\[\tilde{\varepsilon} \bar{N}^* \pi N + \text{h.c.} \sim \tilde{\varepsilon} \chi^\dagger 1 \chi \]

Potential (\(P_\sigma : \text{spin exchange factor} \))
\[V(r) \sim \text{F.T.} \left\{ \tilde{\varepsilon}^2 \frac{1}{\Delta^2 - q^2 - m^2_\pi} \right\} P_\sigma = \text{F.T.} \left\{ \tilde{\varepsilon}^2 \frac{-1}{q^2 + \mu^2} \right\} P_\sigma \sim \tilde{\varepsilon}^2 P_\sigma \frac{e^{-\mu r}}{r} \]

- **Sign of** \(V(r) \) **is fixed and attractive** (c.f. \(\sigma \) exchange in NN)

- **Effective mass** \(\mu = 0 \rightarrow \text{long range force (Coulomb like)} \)
What does $\mu = (m_{\pi}^2 - \Delta^2)^{1/2} = 0 \iff \Delta = m_{\pi}$ mean?

- $\Delta = m_{\pi}$: N^* lies on top of the πN threshold

s-wave resonance at threshold: unitary limit of πN system

- Scattering length diverges \rightarrow universal physics

- completely composite: w.f. of N^* spreads to infinity.

Emergence of long range force

Origin of the long range force

Origin of the long range force

\[
\begin{align*}
N^*(k) & \rightarrow N(k') \\
\pi(q) & \rightarrow \pi^*(p') \\
N(p) & \rightarrow N^*(p')
\end{align*}
\]

Realization in physical hadron systems

- No system with exact \(\mu = 0 \) \((N^*: \Delta \sim 595 \text{ MeV} / m_\pi \sim 140 \text{ MeV}) \)
- Is there any system with small \(\mu \)? \((c.f. \overline{KNN} \sim \Lambda^*N) \)

We consider $D_{s0}(c\bar{s}, \, 0^+)D(c\bar{q}, \, 0^-)$ system via K exchange

- Charm $C=2$: manifestly exotic $(cc\bar{q}\bar{s})$

$D_{s0}(2317)$, KD threshold

$\Delta \sim 450, m_K \sim 495$

- K exchange gives quasi-long range ($\mu \sim 200$ MeV) attraction

Can the attraction generate a bound state?
Prediction of binding energy

Effective Lagrangian for $D_{s0}DK$ (and HQ partner) coupling

$$\mathcal{L} = \frac{h}{2} \text{Tr}[\bar{H}_a S_b A_{ab} \gamma_5] + \text{C.C.}$$

- coupling constant $h : D_0 \rightarrow D\pi$ decay + SU(3) symmetry
- Short range cutoff $R_c \leftarrow$ hadron size

- $R_c \sim 0.5 \text{ fm} \rightarrow \sim 6 \text{ MeV binding}$
Long range force among hadrons emerges when the mass difference Δ matches with the mass of the exchange particle m.

\[V(r) \sim e^{-\mu r} , \quad \mu = \sqrt{m^2 - \Delta^2} \]

K exchange in $D_{s0}(0^+)D(0^-)$ system: $\mu \sim 200$ MeV

\rightarrow prediction of exotic charmed tetraquark