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Motivation
- How can we see (volume of) BH interior by AdS/CFT? t T T ¢
- Entanglement entropy?  ertmanvsidacens, 1303 1080

| t
tthermalize ~ Loj/

entanglement is not enough * Computational complexity?

[Susskind,1411.0690]
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Complexity

~ Computational complexity ™

- number of simple operations to reach | (%))

/

- For L qubits: 1- or 2-qubit unitary trsf. * max complexity: O(e©r) (> Sgp ~ L°)

- Complexity grows linearly in t until teq: ~ e©Y > tiherm. , Same as vol(ERB)! p

Question: Is there other quantity which shows the same long-time growth?

r IVIagiC \
- A different "complexity" which counts only operations difficult to simulate in classical

~Y eOL

- We observed that magic in chaotic spin chain evolves as  ~¢-"-------~; —
\ 4 / t
: >

_ magic might also capture BH interior ~ eOr

J
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Clifford group

Classical computer:  states = discrete set {|00),[01),|10),|11)}
operators = discrete permutations g € S5z

Quantum computer: g € U(2%) » need 2% x 2" complex numbers to describe

If we restrict quantum operations to Clifford group C1, g can be described much easier

0) (1)
Cl={gcUQ@")lgPg' =P} P =(X;Z):Pauligroup x_ (9 1) z-(} °)

- C'l is a finite group generated by H;,S;, CNOT);;  icotesmanssoro0s)

- g € C1 is permutation in S|p| : characterized uniquely only by 2N images of X;, Z;

A
0 =2
CNOTZ] : |Si,8j> — |SZ', (Sj + S; mod2)> Xz — XZXJ Zj — ZZZ‘7

* g can be identified with a classical operator
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Stabilizer states

Define stabilizer pure states St as St = {¢|0---0)|g € Cl}

la) € St : characterized as the simultaneous eigenstate of ¢Z,¢" with (¢Z;g")|S) = |S)
2
St| ~ 277

Action of g € Cl on St can be regarded as a permutation.

v

@ottesman-KniII's theorem )

Quantum computer which consists only of Clifford gates, projection measurement with
Pauli operators, state preparation with St can be efficiently simulated with classical

Qomputer (of O(L?) bits)

J
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Universal quantum computation and "magic”

If we add the T-gate to Clifford group, product of the elements do not close at finite
order, and can approximate any element of U(2%) in infinitely high precision.

1 (=universal)
1 Xi = —=Xi+Y;
T:< €0> /2! ) (T & CI)

v

Let us consider a new notion of complexity of a state |¢)) & St which counts the
smallest number of T-gates to obtain [¢)) from |0---0), which is called "magic".

In order to evaluate magic concretely for any given state, we want to define itin a
different way.

» use the idea of resource theory
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Non-stabilizer state is a "resource” of quantum computation

Suppose we are only allowed to act with Clifford gates and Pauli measurement.

1 ri
\ﬁ(|0> +e1|1))(§ St), by consuming it we can run "T-circuit”

which acts on |¥in) as a T gate

If we have |T) =

[Pin) —P— 7
i

u — ‘¢zn> — T — |¢0ut>
T)

SX ‘ wout > [Zhou,Leung,Chuang,0002039]

c.f. We can run teleportation circuit written only with LOCC by consuming a Bell pair
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Resource theory

Resource theory: a way to characterize quantum states which consists of

- C(free operations): subset of quantum operations (U (2"), measurement, preparation)
- S (free states): set of quantum states such that C|y) =S forany |¢) € S

- M (monotone): a quantity which is zero iff 1)) € S and does not increase under C

[Horodecki,Oppenheim,1209.2162]

One cannot obtain |[Yiarget) by C from |Vresource) if  M(|[Ysarger)) > M([¥resource))

4

For those who only allowed to do C, the states with high M are resources to be
consumed to perform quantum computation.

|dea of resource theory

Motivated by an intuitive (but not so useful) notion of
some property, define more useful quantity M to
measure the same property. /S N v \
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Example

Resource theory of quantum communication (entanglement)

- free operations C = LOCC

- free states S : tensor product states

- monotones M: entanglement entropy, entanglement negativity, etc.

* We can use EE and negativity to measure the entanglement of a
state instead of "counting Bell pairs"

Resource theory of quantum computation (magic)

C = Clifford gates + Pauli projection measurement + stabilizer state preparation

S = STAB:{ Z CLZ"O&L'><C¥7;‘

|a;) €S

a; > 0} : classical mixtures of stabilizer pure states

If there is a quantity which satisfies the requirements of magic monotone, we can use it
to quantify the magic of a state instead of "counting minimum number of T-gates".
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Examples of Magic Monotone

- Robustness of magic

RoM(p) = igf{ Z |a;| ‘P = Z ai|04i><04i|}

(2

i (a;<0) |a;YEST

[Howard,Campbell,1609.07488]

- RoM quantifies how much p goes out of STAB (a; > 0)

2
- {la)(a}ja)est is overcomplete basis: |St| ~ AT > 3~ * linear optimization

- Relative entropy of magic

ru(p) = min (Trplogp—Trplogo)

[Veitch,Mousavian,Gottesman,Emerson,1307.7171]

*Optimization makes the computation very hard for a large system size.

- If we consider only pure states, we can define a faithful monotone without optimization.
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Stabilizer Renyi entropy M- (|1)))

Ma(1¥) = —1og | 5 3 twlplo)'| P={1,X,y,2)°"

peP [Leone, Oliviero,Hamma, 2106.12587]

M>(|v)) satisfies requirements for monotone:
- Ma(|9)) = Ma(Uly)) (U € Cl)

-Since [(@lple) <1, Y [wlple)[* < > [(wlpl)|* =25 mP Ma(|4))

pEP j\pEP 6\ . I-I’-f yw c St]
"= | (lply)| = 1

for some 2% p's
J

.

Other properties of Ma(|¥)) :

2L+1]

- Bounded as M;(]y)) < log{ 2

Ma(U)) 2" 43
- Haar random average: Ms p1aa = — log dUe = - log[ }
U

(2L) 4
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Mana M (|¢)) (qudit with d = 3)

. . d—1
- Generalized Pauli group: P = (Z;, X;) Hi:ls) = 3w |8 % = 20 2 - x;
d—1 d—1 s’=0
s 2mi . s(s=1)
Z=> wls)(s| X=> |(s+1modd)(s| w=eT (d:prime)|Si:|s)—w 7 |s) |X > x2
s=0 s=0
SUMm . X@ %X@'Xj,
. Si, Sj si,(sj +simod d))| Z; — Z{lz
- Clifford group: Cl = (H;, S;,Q;, C-SUM,;) o bl I S
Qi :|s) — [2s) X = X2 Z; — 7,2

Define Mana as | Ag =d FT Yy TTh
—

M) = 1og| 37 3 I(vlAz o) b

(d+1)ag;_1a9;

- A— are orthonormal basis, hence > _(¥l4z[v) = d"

[Gottesman,quant-ph/9802007]

L L — a2i—1 v a9;
15 = ®i2 1w ? Z; X

g =) M (|y)) : monotone

- (YWlAz 1Y) >0 forall @ <= [¥) € St ( = not true for d = 2)

Other properties:

Llogd

- By Jensen's inequality for convex functions, M(|y)) < ;

[Veitch,et.al., 1307.7171]

(not optimal)

optimal bound: My—s ;-1 < M(p) <log(5/3), My—s -1 < Arcsinh(3 +/5) —log5

Llog(d+/m/2
- Haar random average for d >> 1: Miyaar & og( > m/2)
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Higher spin generalized Ising model

L—1 L
_ i) v(it1 i i i) . : d—1
H = — 2—21 GUGUTY — ;(hxﬂé) +h,GY) | G :SU(2) generators with J = .
- integrable for (0,h.) (ifd =2, also for (h;,0))
- chaotic for (hy, h,) ~ (—1.05,0.5)
level statistics (NNSD):
0.87 \\\\\ 7’;‘:’"\\ (h:hi):(;,o-) - h ?\\ (h:hz):(;,(;) -

We compute Mana M (|v)) and stabilizer Renyi entropy M2 (|1)) with
) = e a) (o) € St)
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Stabilizer Renyi entropy M (|y)) (d=2)

W) =e Ma), |o)=lz=-1)®z=1°FDg|z=—1)ec St

chaotic: Ms(]y)) increases monotonically at early time, and saturates at late time with

J= % (hoyhz) = (=1.05,0.5), |a) = [z =-1)@ |z =1)*"? @z = -1) 2L —I_ 3
T T T T T T T T T T T T T T T s— 1 __ 1 . . 1 T T 1 | Y f—
] Late time value M2(|¢>) ~ Myaar = log
[ —_— =2 ] L R
o, ‘Mm ey L . o
_ 2.5: —_— L =4 'm lh | ]h J‘LLHA -JM B —~ 3 A mean;s 00| Ma) /// ’,’/g
53 20} — L=5 \ . EE i -= log[(2~ +1)/2] ,g’
.TQ) E I = ]H}‘]"" HF‘“ 1A 'l")mu E .TQJ r L ’/’/ //,
g 1-55’ T :6 | 1 § 2:7 ===== log[(2" +3)/4] //,;//»g
1.05— " 1 7 //,‘/ -
05F / : I A
[ et A
0.0 ‘ ‘ ‘ \ ‘ \ e obe===""" ]
0.01 1 100 10° o 5 , o s
t t

integrable (h. = 0): larger oscillation, smaller late time value

integrable (h, = 0): M>(|v))) comes backto M, ~ 0 even at late time.

hayhs) = (V2,0 ho hs) = (0,V2 .
( )=( ) ( )= ) Lato Ao valiie (h - =0)
: . . . ! " £ ! | T T T 5FT ' T LEAUC UIIT1IT viadiuc \IIZ_U"
25; 3.0} n [ (hw,hz) = (\/i, 0), max; ooo[Mz] R
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r [ L -,
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-- 4. Growth of Magic in chaotic Ising model

Estimation of saturation time - 1

In order to capture BH interior better than entanglement,
My (e “*|a)) should not saturate at #;,crmalize ~ L -

(Observations:

@ Mo saturates at late time with My ~ L
(2 VeM2 — 1 grows linearly in t at early time

@ growth rate a(L) can be fit well with
L polynomial of L, rather than ¢©F

~

J

» tsaturation ~

\/eMg (late time mean)

—1

2L/2

a(L)

L

> 1O

in large L limit

(ha, hs) = (—1.05,0.5)

| — 12 — [=5
P — L=3 — L=6
L — =4 — [=7

M

A |
;M:J‘f“:“ﬂ

tu

00F

25}
20}
15¢
10F

05f

® )
—— 0.297L +0.28
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Estimation of saturation time - 2

- Time evolution of \/eMg(e—@’Htla» — 1 slow down before saturation

\/eMg (late time max) _ | . . ’
= toururation ~ e < actual saturation time? .

1 Lol 1 (| 1 Lol 1 (| 1 Loy
0.01 0.10 1 10 100 1000
t

(dashed line: fitting with a(L)t)

- Defining ¢, ,, asthe time when veM2 — 1 reaches the late time mean value, we
again observe t/_,(L) ~ e©F

sat

- t. . is dominated by the "slow" regime (significant only for L > 5).

dashed lines: ¢, (L)

saturation time ®)
[ ]
10
S °
[ )
e o
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Results for Mana M (|y)) (d=3)

) =e ), ) =lr=-1)®|z=1)%EDg|z=—1)ec St

chaotic: M(|y)) increases monotonically at early time, and saturates at late time with

M(l)) ~ L x log -

J=1, (hah) = (=1.05,05), |a)=|r=-1)®|z=1°EDg|z=—-1)

NNN\NNS

25f e mewwl et
2.03 3.0; A mean; oo [ M| ,,:.,:::/,/' E /\

i 250 gt ] . .
| ~ 1 ; [upper bound for single S|tej
= 1'5f = “F 5 ,”/’,,/‘ 1
Lo L T |
= 10 = 0 L ] [Goto,TN,Nozaki,2112.14593]

[ 10F /’,, .

i B 4"’g

05+ [
i 0.5:— -
vo:— ‘ ‘ ‘ ‘ ‘ ‘ ‘ 00Le” L
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integrable: M (]y)) comes backto M ~ 0 even at late time. o) = 0.2
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4. Growth of Magic in chaotic Ising model
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Estimations of saturation time (Mana)

Extrapolation of early time linear growth

(hzv hz) = (_1-057 05)

e

0.0 ‘ 015 ‘ ‘ ‘ ‘ 110 ‘ ‘ ‘ ‘ 115 ‘ ‘ ‘ ‘ 5.0
' (dashed line: fitting with a(L)t)
Fitting a(L) of e™ — 1 ~ a(L)t
e «a(L)
I —— 1.5001L% 4 (—2.4005) L + 4.1194
S
L
eM(lafce time) _ q (5/3)L
tsatuv“ation — ~ 5 > LO
a(L) L

[Goto,TN,Nozaki,2112.14593]

t' . such that M (e " |q)) = mean[M]

M _q

12— — — — ——

10
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5t 1
o
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1
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t>100



Plan

V 1. Introduction

V 2. Stabilizer formalism

V 3. Resource theory of magic

V 4. Growth of magic in chaotic Ising model

5. Summary



Tomoki Nosaka, Towards BH interior by Magic of Chaos -- 5.Summary

Summary

To capture BH interior by AdS/CFT, entanglement is not enough since it saturates too
fast. We need to see more refined property of states like computational complexity.

Magic: different kind of complexity which counts only "difficult" gates from viewpoint
of classical simulation.

Numerical results for the chaotic spin chain (2 < L £ 7 sites) suggest:

- Magic monotone M (stabilizer Renyi entropy Ms /Mana M ) approaches its
Haar random value at late time only when H is chaotic.

- Saturation time of M(e~*"*|a))) grows exponentially in L, which becomes larger
than tiwermaiize ~ L in the large L limit.

» Magic monotones might capture some information of BH interior which
entanglement does not.
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- We need to increase system size L to confirm the structure of time dependence.

Further directions

Analytic approach for large L limit?

Other magic monotones / other models (e.g.
Relation to other chaos/complexity measures
What would be the gravity dual of magic?

Field theory generalization of magic?

5. Summary

or

SYK model and its variants)




