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量子計算

 量子力学の法則に基づく計算パラダイム

 様々な応用
高速アルゴリズムの実現

Grover’s algorithm (1996)
量子探索

Shor’s algorithm (1994)
素因数分解

これだけ?



 quantum algorithms with amplitude amplification [Brassard+ 1999]
 quantum algorithms for element disjointness [Ambainis 2002]
 quantum algorithms for Gauss sums [van Dam + 2002] 
 quantum algorithms for solving Pell’s equation [Hallgren 2002]
 quantum algorithms for quantum simulations [Childs 2004]
 quantum algorithms for hidden subgroups [Kuperberg 2004]
 quantum algorithms for finding an unit group [Hallgren 2005]
 quantum algorithms for triangle finding [Magniez+ 2005]
 quantum algorithms for computing knot invariants [Aharonov+ 2006]
 quantum algorithms for data streams [Le Gall 2006]
 quantum algorithms for hidden nonlinear structures [Childs+ 2007]
 quantum algorithms for evaluating NAND formulas [Fahri+ 2007]
 quantum algorithms for group isomorphism [Le Gall 2010]
 quantum algorithms for matrix multiplication [Le Gall 2011]
 quantum algorithms using span programs [Belovs 2011]
 quantum algorithms for matrix inversion [Ta-Shma 2013]
 quantum algorithms for pattern matching [Montanaro 2014]
 ….

Grover’s algorithm (1996)
量子探索

Shor’s algorithm (1994)
素因数分解

https://quantumalgorithmzoo.org/

量子アルゴリズム これだけ?
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量子アルゴリズム園



本日の予定

I. 量子探索アルゴリズム

II. その他の量子アルゴリズムの簡単な紹介

30分
 Shorの素因数アルゴリズム
 HHLアルゴリズム
 量子ウォーク

1時間

III. 量子探索アルゴリズムの応用例 1時間

量子分散計算
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おすすめの参考文献

6章：量子探索

Andris Ambainis. Quantum search algorithms. 
SIGACT News, 35 (2):22-35, 2004.
ArXiv: quant-ph/0504012

(量子探索の応用について)



1.量子回路計算量

Efficient implementation: implementation using a number of 
elementary gates polynomial in n

 Elementary quantum gates: 1-qubit gates and CNOT gates

Any unitary transform over n qubits can be implemented using 
O(n24n) elementary quantum gates

Theorem:

 The complexity of a quantum algorithm is the minimum number of elementary 
gates necessary to implement it

(Discrete set: H,S,T, CNOT)

CNOT



1.量子回路計算量

 For any function f: {0,1}n → {0,1} there exists a unitary matrix Uf of size 
2n+1 x 2n+1 such that

| ⟩𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥 | ⟩0
Uf | ⟩𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥 |𝑓𝑓( ⟩𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥 )

| ⟩𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥 | ⟩1
Uf | ⟩𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥 |𝑓𝑓( ⟩𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥 )⨁1

Uf| ⟩𝑥𝑥 | ⟩𝑎𝑎 | ⟩𝑥𝑥 | ⟩𝑓𝑓(𝑥𝑥)⨁𝑎𝑎
n+1 qubits

 If the function f can be computed efficiently classically, then the unitary Uf
can be implemented efficiently

 If the function f can be computed classically in time polynomial in n, then 
the unitary Uf can be implemented using a number of elementary gates 
polynomial in n

Of| ⟩𝑥𝑥
n qubits (−1)𝑓𝑓(𝑥𝑥)| ⟩𝑥𝑥 “equivalent”

n

n

n

n n

n



2. Groverアルゴリズの概要

Let f: {0,1}n → {0,1} be a Boolean function given as a black box

Classical 
Algorithmx f(x)

Goal: find an element x ∈ {0,1}n such that f(x) = 1 

There is a quantum algorithm solving this problem 
with 𝑂𝑂( 2𝑛𝑛) calls to Of

Quantum search
[Grover 96]

Classically this can be done using 𝑂𝑂(2𝑛𝑛) calls to the black box 
(“brute force search: try all the elements x”)

SAT:  given a Boolean formula f of poly size on n variables, find a 
satisfying assignment (if such an assignment exists)  

Example of application: quantum algorithm for Boolean satisfiability (SAT)

x = one possible assignment
Black box: computes f(x) from x                     poly(n) time 

Quantum search solves SAT in O(2n/2 x poly(n)) time 

2n possibilities 



3. Groverアルゴリズムの詳細
k = O( 2n) times

solution
(w.h.p.)G G GH  n⨂

n 
qubits ⟩|0

G ≡ unitary Of :
⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

n 
qubits H  n⨂ H  n⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x≠0

…

| ⟩𝜓𝜓 𝐺𝐺| ⟩𝜓𝜓 𝐺𝐺2| ⟩𝜓𝜓 𝐺𝐺𝑘𝑘| ⟩𝜓𝜓

W

| ⟩𝜓𝜓 =
1
2𝑛𝑛

�
𝑥𝑥∈ 0,1 𝑛𝑛

| ⟩𝑥𝑥

 𝑊𝑊| ⟩𝜓𝜓 = | ⟩𝜓𝜓Property: H  n⨂ H  n⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x≠0

| ⟩𝜓𝜓 | ⟩𝜓𝜓

| ⟩0 | ⟩0 𝑊𝑊| ⟩𝜑𝜑 = −| ⟩𝜑𝜑 if 𝜓𝜓 𝜑𝜑 = 0



3. Groverのアルゴリズム

| ⟩𝜓𝜓 =
1
2𝑛𝑛

�
𝑥𝑥∈ 0,1 𝑛𝑛

| ⟩𝑥𝑥

| ⟩𝜓𝜓A =
1
𝑀𝑀
�
𝑥𝑥∈A

| ⟩𝑥𝑥

| ⟩𝜓𝜓𝐵𝐵 =
1

2𝑛𝑛 − 𝑀𝑀
�
𝑥𝑥∈𝐵𝐵

| ⟩𝑥𝑥

A = {x ∈{0,1}n | f(x) = 1}

B = {x ∈{0,1}n | f(x) = 0}

Assume 1 ≤ M ≪ 2𝑛𝑛

| ⟩𝜓𝜓 =
𝑀𝑀
2𝑛𝑛

| ⟩𝜓𝜓A +
2𝑛𝑛 − 𝑀𝑀

2𝑛𝑛
| ⟩𝜓𝜓𝐵𝐵 = sin(𝜃𝜃/2) | ⟩𝜓𝜓A + cos(𝜃𝜃/2) | ⟩𝜓𝜓𝐵𝐵

| ⟩𝜓𝜓A

| ⟩𝜓𝜓𝐵𝐵

| ⟩𝜓𝜓
𝜃𝜃/2

M:  number of solutions

write M=|A|



3. Groverのアルゴリズム

| ⟩𝜓𝜓 =
1
2𝑛𝑛

�
𝑥𝑥∈ 0,1 𝑛𝑛

| ⟩𝑥𝑥

 𝑊𝑊| ⟩𝜓𝜓 = | ⟩𝜓𝜓
 𝑊𝑊| ⟩𝜑𝜑 = −| ⟩𝜑𝜑 if 𝜓𝜓 𝜑𝜑 = 0

Property:

| ⟩𝜓𝜓A

| ⟩𝜓𝜓𝐵𝐵

| ⟩𝜓𝜓

𝑎𝑎 ⟩𝜓𝜓𝐴𝐴 + 𝑏𝑏 ⟩𝜓𝜓𝐵𝐵
O

− 𝑎𝑎| ⟩𝜓𝜓𝐴𝐴 + 𝑏𝑏| ⟩𝜓𝜓𝐵𝐵

𝑎𝑎 ⟩𝜓𝜓 + 𝑏𝑏 ⟩𝜓𝜓 ⊥ W
𝑎𝑎 ⟩𝜓𝜓 − 𝑏𝑏 ⟩𝜓𝜓 ⊥

Consider the plane spanned by { ⟩𝜓𝜓𝐴𝐴 , ⟩𝜓𝜓𝐵𝐵 }

for all 𝑎𝑎, 𝑏𝑏 ∈ ℝ we have

Of is a reflection about axis | ⟩𝜓𝜓𝐵𝐵

G=WOf is a rotation of angle 𝜃𝜃

W is a reflection about axis | ⟩𝜓𝜓

Of| ⟩𝜓𝜓
𝜃𝜃/2

WOf| ⟩𝜓𝜓

𝜃𝜃

unitary Of :
⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

Assume 1 ≤ M ≪ 2𝑛𝑛
M:  number of solutions

𝜃𝜃/2

(鏡映)

(鏡映)

(回転)

⟩|𝜓𝜓 ⊥

f



3. Groverのアルゴリズム
k = O( 2n) times

solution
(w.h.p.)G G GH  n⨂

n 
qubits ⟩|0 …

| ⟩𝜓𝜓 𝐺𝐺| ⟩𝜓𝜓 𝐺𝐺2| ⟩𝜓𝜓 𝐺𝐺𝑘𝑘| ⟩𝜓𝜓

| ⟩𝜓𝜓 =
𝑀𝑀
2𝑛𝑛

| ⟩𝜓𝜓A +
2𝑛𝑛 − 𝑀𝑀

2𝑛𝑛
| ⟩𝜓𝜓𝐵𝐵 = sin(𝜃𝜃/2) | ⟩𝜓𝜓A + cos(𝜃𝜃/2) | ⟩𝜓𝜓𝐵𝐵

| ⟩𝜓𝜓A

| ⟩𝜓𝜓
𝜃𝜃/2

G| ⟩𝜓𝜓
𝜃𝜃

G2| ⟩𝜓𝜓
𝜃𝜃

Gk| ⟩𝜓𝜓

𝐺𝐺𝑘𝑘| ⟩𝜓𝜓 = sin((2𝑘𝑘 + 1)𝜃𝜃/2) | ⟩𝜓𝜓A + cos((2𝑘𝑘 + 1)𝜃𝜃/2) | ⟩𝜓𝜓𝐵𝐵

𝐺𝐺𝑘𝑘| ⟩𝜓𝜓 ≈ | ⟩𝜓𝜓𝐴𝐴 if (2𝑘𝑘 + 1)𝜃𝜃/2 ≈ 𝜋𝜋
2

≈
𝜋𝜋
4

2𝑛𝑛
𝑀𝑀

𝑀𝑀
2𝑛𝑛

= sin 𝜃𝜃/2 ≈ 𝜃𝜃/2

measure a 
solution with 

high probability 
if 𝐺𝐺𝑘𝑘| ⟩𝜓𝜓 ≈ | ⟩𝜓𝜓𝐴𝐴

𝑘𝑘 ≈
𝜋𝜋

2𝜃𝜃

Assume 1 ≤ M ≪ 2𝑛𝑛
M:  number of solutions



4. Groverアルゴリズのまとめ

Let f: {0,1}n → {0,1} be a Boolean function given as a black box

Classical 
Algorithmx f(x)

Goal: find an element x ∈ {0,1}n such that f(x) = 1 

There is a quantum algorithm solving this problem 
with 𝑂𝑂( 2𝑛𝑛/𝑀𝑀) calls to Of

Quantum search
[Grover 96]

Classically this can be done using 𝑂𝑂(2𝑛𝑛/𝑀𝑀) calls to the black box 
(“try 𝑂𝑂(2𝑛𝑛/𝑀𝑀) element taken uniformly at random”)

Assume 1 ≤ M ≪ 2𝑛𝑛
M:  number of solutions

 Works even for larger values of M
 Can be adapted to work even if M is unknown

M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on 
quantum searching. Fortsch.Phys.46:493-506,1998. ArXiv: 9605034. 

 M can even be estimated efficiently
G. Brassard, P. Høyer, and A. Tapp. Quantum counting. 
Proceedings of ICALP’98, pp. 820–831. Arxiv: 9805082.



5.量子振幅増加

Consider a randomized procedure (or a quantum algorithm) that 
solves some problem with probability p

procedureinput solution 
(correct with 
probability p)

There is a quantum algorithm that get a solution 
with high probability with 𝑂𝑂( 1/𝑝𝑝) repetitions

Quantum amplitude 
amplification
[Brassard- Høyer 97]

Classically we need to repeat the algorithm 𝑂𝑂(1/𝑝𝑝) times in order to get a 
solution with high probability

Example of application: quantum algorithm for Boolean satisfiability (SAT)
find a solution among 2n candidates (we can check if a candidate is a solution efficiently)

Procedure: take a candidate uniformly at random and check 

Success probability: p=1/ 2n (if there is a unique solution)
Classically we need to repeat the procedure 𝑂𝑂(2𝑛𝑛) times
Quantumly only 𝑂𝑂( 2𝑛𝑛) repetitions are enough



おすすめの参考文献

第6章：量子探索

Andris Ambainis. Quantum search algorithms. 
SIGACT News, 35 (2):22-35, 2004.
ArXiv: 0504012

(量子探索の応用について)
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30分
 Shorの素因数アルゴリズム
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Integer Factoring

 requires exponential time with the best known algorithms    
(this is the basis of the widely used RSA cryptosystem)

 there exists a polynomial-time quantum algorithm

If we can construct a quantum computer, we can break RSA 
cryptosystem！

RSA (assumes hardness of factoring)

15 = 3 x 5

147573952589676412927 = 193707721 x 761838257287

Designed in 1994 by Peter Shor

???



Integer Factoring

 requires exponential time with the best known algorithms    
(this is the basis of the widely used RSA cryptosystem)

 there exists a polynomial-time quantum algorithm

15 = 3 x 5

147573952589676412927 = 193707721 x 761838257287

Designed in 1994 by Peter Shor

 量子Fourier変換を初めて導入
 量子Fourier変換は多項式サイズの量子回路で実現できることを証明

 量子Fourier変換を用いて、
任意の群の元の位数は簡単に求められることを証明
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HHL Algorithm

The HHL Algorithm:
Quantum Algorithm for Problems from Linear Algebra

[Harrow, Hassidim, Lloyd 09]



In the classical time complexity setting, all these problems are equivalent to 
matrix multiplication (they can be solved in time 𝑂𝑂 𝑛𝑛3 or even 𝑂𝑂 𝑛𝑛2.373 )

Problems Related to Matrix Multiplication

Determinant (DET)
Compute the determinant of an n x n matrix over a field

Inversion (INV) 
Compute the inverse of an n x n invertible matrix over a field

Solution of a linear system (SYS) 
Solve the system Ax=b, where A is an n x n invertible matrix over a field



HHL Algorithm for “Systems of Linear Equations”
[Harrow, Hassidim, Lloyd 09]

Input:

 A Hermitian matrix A ∈ ℂ𝑛𝑛×𝑛𝑛 that has eigenvalues in the range 
[-1,-1/κ] ∪ [1/κ,1], and has ≤ s nonzero entries per row

 A vector b ∈ ℂ𝑛𝑛 of norm 1 given as a quantum state | ⟩b

κ is called the condition number (条件数) of A
we assume that the non-zero entries can be 
accessed efficiently

Output:

An approximation of the quantum state | ⟩x

Compare with the task: solve the system of linear equations Ax = b 
(i.e., compute A-1b )

write x = A−1b  and  x = A−1b
A−1b



HHL Algorithm for “Systems of Linear Equations”
[Harrow, Hassidim, Lloyd 09]

Input:

 A Hermitian matrix A ∈ ℂ𝑛𝑛×𝑛𝑛 that has eigenvalues in the range 
[-1,-1/κ] ∪ [1/κ,1], and has ≤ s nonzero entries per row

 A vector b ∈ ℂ𝑛𝑛 of norm 1 given as a quantum state | ⟩b

Output:

An approximation of the quantum state | ⟩x

write x = A−1b  and  x = A−1b
A−1b

Theorem ([Harrow, Hassidim, Lloyd 09])

There is a quantum algorithm that computes an approximation of | ⟩x in 
time O(log(n)s2κ2/ε), where ε is the precision of the approximation.  

Exponentially better than the known classical algorithms for inverting the system when s,κ,ε-1 ≪ n
Classical conjugate gradient method: O(nsκ1/2log(1/ε)) time

κ is called the condition number (条件数) of A
we assume that the non-zero entries can be 
accessed efficiently



HHL Algorithm for “Systems of Linear Equations”

Output:

An approximation of the quantum state | ⟩x

Theorem ([Harrow, Hassidim, Lloyd 09])

There is a quantum algorithm that computes an approximation of | ⟩x in 
time O(log(n)s2κ2/ε), where ε is the precision of the approximation.  

Exponentially better than the known classical algorithms for inverting the system when s,κ,ε-1 ≪ n
Classical conjugate gradient method: O(nsκ1/2log(1/ε)) time

 Exponentially better than the best classical algorithm for matrix 
inversion for sparse and well-conditioned matrices

 Main issue: the solution is output as a quantum state

 Possible applications of the HHL Algorithm: estimate ⟨x|M| ⟩x for some 
operator M

“extract statistics about the solution x”
applications for quantum machine learning ?  [Wiebe, Braun, Lloyd 12],…

But actually we can often do the same classically [Tang 19]…



Phase Estimation

Given a unitary matrix U on m qubits and an eigenvector | ⟩𝜓𝜓 such that 
U| ⟩𝜓𝜓 = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋| ⟩𝜓𝜓 , output a value �𝜃𝜃 such that 𝜃𝜃 − �𝜃𝜃 < 1/2r

This outputs a good approximation �𝜃𝜃 with constant probability

Using some additional work, we can obtain a quantum unitary circuit 
that, for any | ⟩𝜓𝜓 such that U| ⟩𝜓𝜓 = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋| ⟩𝜓𝜓 , maps the quantum state 
| ⟩0 … 0 | ⟩𝜓𝜓 | ⟩0 … 0 to a state close to | ⟩0 … 0 | ⟩𝜓𝜓 | ��𝜃𝜃 for some value �𝜃𝜃
such that 𝜃𝜃 − �𝜃𝜃 < 1/2r

Complexity: roughly the complexity of applying 𝑈𝑈2𝑟𝑟−1

r

rr qubits



HHL Algorithm for “Systems of Linear Equations”
[Harrow, Hassidim, Lloyd 09]Input:

 A Hermitian matrix A ∈ ℂ𝑛𝑛×𝑛𝑛 that has eigenvalues in the range 
[-1,-1/κ] ∪ [1/κ,1], and has ≤ s nonzero entries per row

 A vector b ∈ ℂ𝑛𝑛 given as a quantum state | ⟩b

Output:
An approximation of the quantum state | ⟩x

write x = A−1b  and  x = A−1b
A−1b

Let λ1, …, λn denote the eigenvalues of A, and u1, …, un the eigenvectors 
The unitary matrix 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 has same eigenvectors, and eigenvalues 𝑒𝑒2𝜋𝜋𝜋𝜋𝜆𝜆1, …, 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝑛𝑛

Applying phase estimation for U = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 on | ⟩0 … 0 | �u𝑗𝑗 | ⟩0 … 0 gives a state close to | ⟩0 … 0 | �u𝑗𝑗 | ��𝜆𝜆𝑗𝑗

Write | ⟩b = ∑𝑗𝑗 𝛽𝛽𝑗𝑗| �u𝑗𝑗
Then | ⟩x = 𝛽𝛽𝑗𝑗

𝜆𝜆𝑗𝑗
| �u𝑗𝑗

Applying phase estimation for U = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 on | ⟩0 … 0 | ⟩b | ⟩0 … 0 gives a state close to 
∑𝑗𝑗 𝛽𝛽𝑗𝑗| ⟩0 … 0 | �u𝑗𝑗 | ��𝜆𝜆𝑗𝑗

Theorem ([Harrow, Hassidim, Lloyd 09])

There is a quantum algorithm that computes an approximation of | ⟩x in 
time O(log(N)s2κ2/ε), where ε is the precision of the approximation.  



HHL Algorithm for “Systems of Linear Equations”
[Harrow, Hassidim, Lloyd 09]Input:

 A Hermitian matrix A ∈ ℂ𝑛𝑛×𝑛𝑛 that has eigenvalues in the range 
[-1,-1/κ] ∪ [1/κ,1], and has ≤ s nonzero entries per row

 A vector b ∈ ℂ𝑛𝑛 given as a quantum state | ⟩b

Output:
An approximation of the quantum state | ⟩x

write x = A−1b  and  x = A−1b
A−1b

Let λ1, …, λn denote the eigenvalues of A, and u1, …, un the eigenvectors 
The unitary matrix 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 has same eigenvectors, and eigenvalues 𝑒𝑒2𝜋𝜋𝜋𝜋𝜆𝜆1, …, 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝑛𝑛

Applying phase estimation for U = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 on | ⟩0 … 0 | �u𝑗𝑗 | ⟩0 … 0 gives a state close to | ⟩0 … 0 | �u𝑗𝑗 | ��𝜆𝜆𝑗𝑗

Write | ⟩b = ∑𝑗𝑗 𝛽𝛽𝑗𝑗| �u𝑗𝑗
Then | ⟩x = 𝛽𝛽𝑗𝑗

𝜆𝜆𝑗𝑗
| �u𝑗𝑗

Applying phase estimation for U = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 on | ⟩0 … 0 | ⟩b | ⟩0 … 0 gives a state close to 
∑𝑗𝑗 𝛽𝛽𝑗𝑗| ⟩0 … 0 | �u𝑗𝑗 | ��𝜆𝜆𝑗𝑗

can be converted to ∑𝑗𝑗
𝛽𝛽𝑗𝑗
�𝜆𝜆𝑗𝑗

| ⟩0 … 0 | �u𝑗𝑗 | ��𝜆𝜆𝑗𝑗 with some probability depending on the �𝜆𝜆𝑗𝑗s 
normalized

can be converted to ∑𝑗𝑗
𝛽𝛽𝑗𝑗
�𝜆𝜆𝑗𝑗

| ⟩0 … 0 | �u𝑗𝑗 | ⟩0 … 0 ≈ | ⟩0 … 0 | ⟩x | ⟩0 … 0 using uncomputation
normalized normalized

= | ⟩0 … 0 | ⟩x | ⟩0 … 0

apply amplitude amplification to boost the success probability 
(number of iterations depends on the �𝜆𝜆𝑗𝑗s)

Complexity depends crucially on the 
efficiency of applying (powers of) U

Using methods for Hamiltonian simulation 
this can be done in time O(log(n)s2κ/ε)

O(κ) iterations



The HHL Algorithm

 The HHL algorithm
Exponential “speedup” for sparse and well-conditioned matrices 
What applications? Applications to machine learning?

The HHL Algorithm:
Quantum Algorithm for Problems from Linear Algebra:



本日の予定

I. 量子探索アルゴリズム

II. その他の量子アルゴリズムの簡単な紹介

30分
 Shorの素因数アルゴリズム
 HHLアルゴリズム
 量子ウォーク

1時間

III. 量子探索アルゴリズムの応用例 1時間

量子分散計算



量子ウォーク



理論計算機科学者による再発見

Artificial problem



量子ウォーク型探索

様々な応用があるが、
古典に対する高速化は高々quadratic

Johnsonグラフ(探索グラフ)上の
量子ウォーク



本日の予定

I. 量子探索アルゴリズム

II. その他の量子アルゴリズムの簡単な紹介

30分
 Shorの素因数アルゴリズム
 HHLアルゴリズム
 量子ウォーク

1時間

III. 量子探索アルゴリズムの応用例 1時間

量子分散計算



量子分散計算の理論研究

 For classical computational problems (i.e., problems with classical 
inputs/outputs), quantum distributed algorithms have mostly been 
studied in the framework of 2-party communication complexity

 Relatively few results focusing on n ≫ 2 parties:

 exact quantum algorithms for leader election on anonymous networks 
[Tani, Kobayashi, Matsumoto 2005]

 study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz 2009]
[Elkin, Klauck, Nanongkai, Pandurangan 2014]

negative results: show impossibility of quantum distributed 
computing faster than classical distributed computing for many 
important problems (shortest paths, minimum spanning tree,…)

Question: can quantum distributed algorithms be useful? 
(over non-anonymous networks)



最近の結果

Question: can quantum distributed algorithms be useful? 

Two main models in distributed computing

Quantum can be useful! 
[LG, Nishimura, Rosmanis 2019]

Quantum can be useful!
[LG, Magniez 2018]CONGEST model

LOCAL model

(limited bandwidth)

(unlimited bandwidth)

(over non-anonymous networks)

PODC’18, QIP’19
Arxiv: 1804.02917

STACS’19, TQC’19
Arxiv: 1810.10838

量子探索に基づく



Classical Distributed Computing
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

Complexity: the number of rounds used

1 4

32

5
6

1 4

3
6

Round 1
local 

computation

local 
computation

local 
computation

local 
computation

local 
computation

local 
computation

Round 2Round 3
at the end of Round 1:
at the end of Round 2:

one message through each edge per round (in each direction) 

what size?

CONGEST model: only O(log n) bits per message 

LOCAL model: no restriction on the size of each message



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node only knows the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

one message of qubits through each edge per round (in each direction) 

Complexity: the number of rounds needed for the computation
 each node is a quantum processor

more formally:

1 4

32

5
6

Q

Q

Q

Q

Q

Q

Q Q
Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message



Now qubits can be sent instead of bits

Quantum distributed computing

First Result: CONGEST model

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

The diameter of the network can be computed in Θ( 𝑛𝑛) rounds in 
the quantum CONGEST model but requires Θ(𝑛𝑛) rounds in the 
classical CONGEST model (when the diameter is constant)

[LG, Magniez 18]

n: number of nodes of the network



Diameter and Eccentricity

Consider an undirected and unweighted graph G = (V,E)

a

c
b d

e
f

g

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

d(u,v) = distance between u and v

(直径)



Diameter and Eccentricity

Consider an undirected and unweighted graph G = (V,E)

a

c
b d

e
f

g D = 4

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

The eccentricity of a node u is defined as  

ecc (u) = max {d(u,v)}
v ∈ 𝑉𝑉

d(u,v) = distance between u and v= max {ecc (u)}
u ∈ 𝑉𝑉

ecc (a) = 3
ecc (b) = 3
ecc (c) = 2
ecc (d) = 3
ecc (e) = 3
ecc (f ) = 4
ecc (g) = 4

(離心数)

(直径)



Classical Distributed Computing: Computing Distances

1 4

32

5
6

Distance from node 1 = ?Distance from node 1 = 2



6
Distance from node 1 = ?

Classical Distributed Computing: Computing Distances

1 4

32

5

dist = 0

Round 1

at the end of Round 1: each node updates its distance

dist = 1

dist = 1

dist = 1

Round 2

at the end of Round 2: each node updates its distance

dist = 2
dist = 2

the source node sends a message to its neighbors

nodes tell new knowledge to neighbors

Distance from node 1 = 2

The distances from node 1 can be computed using the Breadth-First Search algorithm
Complexity: ecc(1) rounds  (≤ D rounds)

(nodes that received a message at Round 1 set “dist = 1”)

(幅優先探索アルゴリズム）



Classical Distributed Computing: Computing Distances

The distances from node 1 can be computed using the Breadth-First Search algorithm

 for any fixed node u, the eccentricity ecc(u) can be computed in O(D) 
rounds by the Breadth-First Search algorithm (starting at u) 

 but computing the diameter (i.e., the maximum eccentricity) 
requires Θ(n) rounds even for constant D  
[Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

In classical distributed computing (CONGEST model):

Complexity: ecc(1) rounds  (≤ D rounds)

eccentricity:    ecc (u) = max {d(u,v)}
v ∈ 𝑉𝑉

diameter:      D = max {d(u,v)}

= max {ecc (u)}
u ∈ 𝑉𝑉

u,v ∈ 𝑉𝑉

We show that we can do better in the quantum setting



Computation of the Diameter in the CONGEST model

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

3/2-approximation (upper bounds) 𝑂𝑂( 𝑛𝑛 + 𝐷𝐷)
[Lenzen+13, Holzer+14]

𝑂𝑂(3 𝑛𝑛𝑛𝑛 + 𝐷𝐷)

(3/2-ε)-approximation (lower bounds) �Ω(𝑛𝑛)
[Holzer+12, Abboud+16]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]

condition: holds for quantum distributed algorithms 
using only polylog(n) qubits of memory per node

main result: sublinear-round quantum computation of the diameter whenever D=o(n)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

(our algorithm uses O((log n)2) qubits of quantum memory per node)

first gap between classical and quantum in the CONGEST model for a major 
problem of interest to the distributed computing community

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

the tilde notation removes polylog(n) factors



main result: sublinear-round quantum computation of the diameter whenever D=o(n)

Our Upper Bound

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

(our algorithm uses O((log n)2) qubits of quantum memory per node)

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

first gap between classical and quantum in the CONGEST model for a major 
problem of interest to the distributed computing community



Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: try to use Grover search

There is a quantum algorithm for this search problem 
using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exists)

u f(u)𝑛𝑛 = |V|  (number of nodes)



Recap: Grover Algorithm

O( n) timesm = O(log n)

independent of f

depends on f
(depends on the network)

solution
(w.h.p.)

G G G

H  m⨂
m 

qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂
phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0

(i.e., without communication)
To implement the oracle, the leader node needs to communicate with the other nodes

Total number of rounds of communication = O( n x number of rounds to implement the oracle) 

f



can be done locally
(i.e., without communication)

Recap: Grover Algorithm

O( n) timesm = O(log n)

independent of f

depends on f
(depends on the network)

solution
(w.h.p.)

G G G

H  m⨂
m 

qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂
phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0

can be done locally
(i.e., without communication)

(i.e., without communication)
can be done locally

We compute the diameter by implementing 
this circuit in the distributed setting:
One arbitrary node (the “leader”) will 
implement this circuit

To implement the oracle, the leader node needs to communicate with the other nodes
Total number of rounds of communication = O( n x number of rounds to implement the oracle) 

f



Implementation of the Oracle in O(D) rounds

oracle⟩|𝑢𝑢 ⟩|0 ⟩|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c
b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

The nodes implement the classical protocol  
for computing the eccentricity of u, which gives 

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢) a

2. 

[ecc(a) ≤ D rounds] 

[O(D) rounds]

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

b d

e

g

f

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTs �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTs

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 b ⟩|𝑢𝑢 e ⟩|𝑢𝑢 dNode c sends the registers to b,e,d
……

here leader = node a

Example:

3. The nodes revert Step 1 [ecc(a) ≤ D rounds] 



Implementation of the Oracle in O(D) rounds

oracle⟩|𝑢𝑢 ⟩|0�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c
b d

e
f

g

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

The nodes implement the classical protocol   
for computing the eccentricity of u, which gives 

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢) a

2. 

[ecc(a) ≤ D rounds] 

3. The nodes revert Step 1 [ecc(a) ≤ D rounds] 

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

[O(D) rounds]

V={a,b,c,d,e,f,g}
here leader = node a

Example:



can be done locally
(i.e., without communication)

Usual Grover Algorithm

O( n) timesm = O(log n)

independent of f

depends on f
(depends on the graph)

solution
G G G

H  m⨂
m 

qubits

oracle 
workspace

⟩|0 measure

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂
phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0

(i.e., without communication)
can be done locally

We compute of the diameter by implementing 
this circuit in the distributed setting:
One arbitrary node (the “leader”) will 
implement this circuit

To implement the oracle, the leader node needs to communicate with the other nodes
Total number of rounds of communication = O( n x number of rounds to implement the oracle) 

= O( n x D)

f



Quantum Distributed Computation of the Diameter: Summary

There is a quantum algorithm for this search problem 
using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity 
With further work, the complexity 

can be reduced to 𝑂𝑂( 𝑛𝑛𝐷𝐷) rounds 

Complexity: 𝑂𝑂( 𝑛𝑛 × D) rounds 

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally implements Grover algorithm. Each call to the 

black box is implemented by using the standard O(D)-round 
classical algorithm computing the eccentricity.

Classically in O(D) rounds it is possible to simultaneously compute the 
eccentricities of D vertices [Peleg+12]

Thus we can instead do a Grover search over groups of D 
vertices (there are n/D groups) in 

𝑂𝑂( 𝑛𝑛/𝐷𝐷 × D) = 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 

converted into a 
quantum version



main result: sublinear-round quantum computation of the diameter whenever D=o(n)

Our Upper Bound

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

first gap between classical and quantum in the CONGEST model for a major 
problem of interest to the distributed computing community

(our algorithm uses O((log n)2) qubits of quantum memory per node)



The Lower Bounds

 reduce DISJ to the distributed computation of diameter [Frischknecht+12]

classical lower bound

 the (two-party) communication complexity of DISJn is Ω(n) bits [Kalyanasundaram+92]

unconditional quantum lower bound
 same reduction from DISJ to the distributed computation of diameter 
 the (two-party) communication complexity of DISJn is Ω( 𝑛𝑛) qubits [Razborov03]

Classical Quantum (our results)

Exact computation (upper  bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]
�Ω( 𝑛𝑛𝑛𝑛) [conditional]

via two-party communication complexity of the disjointness function (DISJ)

conditional quantum lower bound
 Claim: if the quantum distributed algorithm for diameter uses few quantum memory

per node, then the reduction can be adjusted to give a two-party protocol for DISJ 
using few messages (idea: send communication in batches) 

 the (two-party) r-message quantum communication complexity of DISJn is
Ω( 𝑛𝑛/𝑟𝑟 + 𝑟𝑟 ) qubits [Braverman+15]

remark: D is an obvious lower bound



Summary

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]

main result: sublinear-round quantum computation of the diameter in the 
CONGEST model (when D is small enough)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)



Interesting Research Direction

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]

main result: sublinear-round quantum computation of the diameter in the 
CONGEST model (when D is small enough)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

Our upper bound is obtained by showing how to implement quantum search 
in a distributed setting

more generally, we give a generic framework       
for distributed quantum optimization (see paper)

 Research Direction: find other applications of our technique



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing

Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message

The diameter of the network can be computed in Θ( 𝑛𝑛) rounds in 
the quantum CONGEST model but requires Θ(𝑛𝑛) rounds in the 
classical CONGEST model (when the diameter is constant)

[LG, Magniez 18]

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

n: number of nodes of the network

There is a computational problem that can be solved in 1 round in the 
quantum LOCAL model but requires 2 rounds classically.

[Gavoille et 
al. 09]

unbounded amount of quantum communication 
vs.

unbounded amount of classical communication

[LG, Rosmanis, 
Nishimura 18]



Superiority of the Quantum LOCAL model

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 07]

Also used in some of the recent results on quantum shallow circuits 
[Bravyi, Gosset, König 18]

[LG, Rosmanis, 
Nishimura 18]



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

multiple of 3

Each node will output one bit

n=18

n/3 nodes

n/3 nodes
n/3 nodes

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 07]

[LG, Rosmanis, 
Nishimura 18]



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

Each node will output one bit

multiple of 3



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

(parity of the outputs of the nodes of even index on the left)

(parity of the outputs of all the nodes of odd index)

Each node will output one bit

multiple of 3



Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

Each node will output one bit

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

multiple of 3

Superiority of the Quantum LOCAL model

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

There is a 2-round quantum algorithm that samples from the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Claim 1:



Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

Each node will output one bit

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

There is a 2-round quantum algorithm that samples from the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Claim 1:

multiple of 3

Claim 2: In the LOCAL model, any classical algorithm that samples (even 
approximately) from the same distribution must use at least n/6 rounds.



There is a 2-round quantum algorithm that samples from the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

multiple of 3 n=18

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four  bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

Each node will output one bit

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

Claim 1:

Each non-corner node measures its qubit in the X 
basis and then outputs the bit corresponding to the 
measurement outcome
(no communication)

Each corner node measures its qubit in the X basis if 
its input bit is 0, or measures it in the Y basis if its input 
bit is 1, and then outputs the bit corresponding to the 
measurement outcome
(no communication)

2.

3.

1. The nodes prepare the graph state corresponding to 
the whole triangle
(this can be done in 2 rounds --- see next slides)



There is a 2-round quantum algorithm that samples from the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Claim 1:

Claim 2:

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

Each node will output one bit
n/3 

nodes

 In any classical protocol using less than n/6 rounds: 
𝑚𝑚𝑅𝑅 is an affine function of b1 and b2
𝑚𝑚𝐵𝐵 is an affine function of b2 and b3
𝑚𝑚𝐿𝐿 is an affine function of b1 and b3
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 is an affine function of b1, b2 and b3

 Such functions cannot satisfy all the linear conditions of Claim 1

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6
(parity of the outputs of the nodes of even index on the right)

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17
(parity of the outputs of all the nodes of odd index)

The proof is again almost the same as in 
[Barrett, Caves, Eastin, Elliot, Pironio 07]

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

In the LOCAL model, any classical algorithm that samples (even 
approximately) from the same distribution must use at least n/6 rounds.



Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input
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𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

Each node will output one bit

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

There is a 2-round quantum algorithm that samples from the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Claim 1:

multiple of 3

Claim 2: In the LOCAL model, any classical algorithm that samples (even 
approximately) from the same distribution must use at least n/6 rounds.



Preparing the Graph State of a Network in 2 Rounds

1. Each node prepares one qubit in state ⟩|0 +| ⟩1
2

2. Each node prepares one ancilla qubit initialized to ⟩|0 for each edge
3. For each edge a controlled-Z operation is implemented by using 

the ancilla qubits in two rounds of communication

: one qubit initialized to state ⟩|0 +| ⟩1
2

: one ancilla qubit initialized to state ⟩|0

CS CS

⟩|0 ⟩|0

first round of communication

second round of communication

𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑖𝑖

𝐶𝐶𝐶𝐶2 = 𝐶𝐶𝐶𝐶

works for any network

Open problem: can we do it in 1 round?



 We have shown that in the LOCAL model quantum distributed algorithms 
can also be faster, at least for some computational task 
(for our problem: 2 rounds quantumly vs. Θ(𝑛𝑛) rounds classically)

Conclusions
 We have shown that in the CONGEST model the diameter of the network 

can be computed faster using quantum distributed algorithms 
(for constant diameter: Θ( 𝑛𝑛) rounds quantumly vs. Θ(𝑛𝑛) rounds classically)

Interesting research directions:

 Find other applications of quantum distributed algorithms in the 
CONGEST and LOCAL model

 Prove the superiority of quantum distributed algorithms in other models

𝑂𝑂(𝑛𝑛1/4)-round quantum algorithm for the All-Pairs 
Shortest Path problem in the CONGEST-CLIQUE model          
(classically the best known is 𝑂𝑂(𝑛𝑛1/3) rounds)

Recent result 
[Izumi, LG 2019]:



本日の予定

I. 量子探索アルゴリズム

II. その他の量子アルゴリズムの簡単な紹介

30分
 Shorの素因数アルゴリズム
 HHLアルゴリズム
 量子ウォーク

1時間

III. 量子探索アルゴリズムの応用例 1時間
量子分散計算
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