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guantum algorithms with amplitude amplification [Brassard+ 1999]
guantum algorithms for element disjointness [Ambainis 2002]

guantum algorithms for Gauss sums [van Dam + 2002]
guantum algorithms for solving Pell’'s equation [Hallgren 20(
guantum algorithms for quantum simulations [Childs 2004]
guantum algorithms for hidden subgroups [Kuperberg 2004]
guantum algorithms for finding an unit group [Hallgren 2005
guantum algorithms for triangle finding [Magniez+ 2005]
guantum algorithms for computing knot invariants [Aharonoy
guantum algorithms for data streams [Le Gall 2006]
guantum algorithms for hidden nonlinear structures [Childs+
guantum algorithms for evaluating NAND formulas [Fahri+ 2
guantum algorithms for group isomorphism [Le Gall 2010]
guantum algorithms for matrix multiplication [Le Gall 2011]
guantum algorithms using span programs [Belovs 2011]
guantum algorithms for matrix inversion [Ta-Shma 2013]
guantum algorithms for pattern matching [Montanaro 2014]

(Shor's algorithm (1994)\
= ISk Sy

EF7ILTY XL
https://qr

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please
email me at stephen.jordan@microsoft.com. (Alternatively, you may submit a pull request to the
repository on github.) Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring

Speedup: Superpolynomial

Description: Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor
solves this in O(n3) time [82,125]. The fastest known classical algorithm for integer factorization is

the general number field sieve, which is believed to run in time 200" The best rigorously proven

upper bound on the classical complexity of factoring is 0(2"”’4*"{”) via the Pollard-Strassen
algorithm [252, 362]. Shor's factoring algorithm breaks RSA public-key encryption and the closely
related quantum algorithms for discrete logarithms break the DSA and ECDSA digital signature
schemes and the Diffie-Hellman key-exchange protocol. A quantum algorithm even faster than Shor's
for the special case of factoring “semiprimes”, which are widely used in cryptography, is given in [271].
If small factors exist, Shor's algorithm can be beaten by a quantum algorithm using Grover search to
speed up the elliptic curve factorization method [366]. Additional optimized versions of Shor's
algorithm are given in [384, 386]. There are proposed classical public-key cryptosystems not believed
to be broken by quantum algorithms, cf. [248]. At the core of Shor's factoring algorithm is order finding,
which can be reduced to the Abelian hidden subgroup problem, which is solved using the quantum
Fourier transform. A number of other problems are known to reduce to integer factorization including
the membership problem for matrix groups over fields of odd order [253], and certain diophantine
problems relevant to the synthesis of quantum circuits [254].

Algorithm: Discrete-log

Speedup: Superpolynomial

Description: We are given three n-bit numbers a, b, and N, with the promise that b = a®* mod N
for some s. The task is to find s. As shown by Shor [82], this can be achieved on a quantum computer
in poly(n) time. The fastest known classical algorithm requires time superpolynomial in n. By similar
techniques to those in [82], quantum computers can solve the discrete logarithm problem on elliptic
curves, thereby breaking elliptic curve cryptography [109, 14]. A further optimization to Shor's
algorithm is given in [385]. The superpolynomial quantum speedup has also been extended to the
discrete logarithm problem on semigroups [203, 204]. See also Abelian hidden subgroup.

Algorithm: Pell's Equation

Speedup: Superpolynomial

Description: Given a positive nonsquare integer d, Pell's equation is z° — dyQ = 1. Forany such d
there are infinitely many pairs of integers (x,y) solving this equation. Let (x;, y, ) be the pair that
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Quantum Search Algorithms

Andris Ambainis®

Wy Abstract
—_
5 We review some of quantum algorithms for search problems: Grover's search algorithm, its
e generalization to amplitude amplification, the applications of amplitude amplification to various
— problems and the recent quantum algorithms based on quantum walks.
—
L 1 Introduction
P Quantum computation explores the possibilities of applying quantum mechanics to computer sci-
-~ ence.  If built, quantum computers would provide speedups over conventional computers for a
Q variety of problems, The two most famous results in this area are Shor's quantum algorithms for
am factoring and finding discrete | [35] and Grover's ch algorithm !
== She nd Grover's algorithms have been followed by a lot of other results. Each of these
.‘;’I two algorithms has been generalized and applied to s other problems, New ithms and

new al

i thiic paradigms (such as adiabatic computin
simulated annealing) |

In this column, we survey some of the results on quantum algorithms, foeusing on the branch
of quantum : rch ]

21] which is the quantum connterpart of
+ heen discovered,

lgorithms inspired by Grover's ses alporithm [22].

W on quantum computing which starts with the
s, we follow a different path. We first deseribe Grover's search result and its
generalization, amplitude amplification (s«

Instead of the conventional introduction /i

backegronnds from physi

tion [2). Then, we explore what can be obtained by using
v combir

these results as “quantum black boxes™

m with methods from conventional (non-
quantum) algorithims and complexity (seetion 3). Wi

* three examples of quantum algoritlhms
of this type,

arXiv:quant-ph/0

me very simple and two more advaneed ones. After that, in section 3 we show some
simple application of Grover’s search fails but mor

(based on quantum walks) suceeed.

examples we

advanced quantum algorithms

2  Grover’s search and amplitude amplification

Grover's search algorithm is one of main quantum algorithms, The problem that it solves is very
simple to state:

*Institute for Quantum Computing and Department of Combinatories and Optimization, University of Waterloo,
e-mail: asbainis@math.uvaterloo.ca This work done at School of Mathematic
Princeton, N.J 08540, USA. Supported by Grant DMS-01112095. Any opinions

in this material are those of the anthor and do not necessarily reflect views of the

Institute for Advanced Study,

ndings and conclusions
ational Science Founds

Andris Ambainis. Quantum search algorithms.
SIGACT News, 35 (2):22-35, 2004.
ArXiv: quant-ph/0504012
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v Elementary quantum gates: 1-qubit gates and CNOT gates
(Discrete set: H,S, T, CNOT)

1 0 0 0]
wor T e
0 0 1 0]
Phase — 9 |— [(1) S]
Hadamard 71— Lll 1] 1 0
V2 11 -1 /8 T |— [O 6”/4]

v' The complexity of a quantum algorithm is the minimum number of elementary
gates necessary to implement it

Theorem: | Any unitary transform over n qubits can be implemented using
O(n?4") elementary quantum gates

Efficient implementation: implementation using a number of
elementary gates polynomial in n



1.2 FHIRsTHE=

v For any function f: {0,1}" — {0,1} there exists a unitary matrix U; of size
21 x 2" such that

f
|2, %5, e, X )| 0) = X1, X9y oo, X f (2, Xy, ey X))

f
|2, %5, oo, XD 1) = X0, X0 o, X f (2, Xy, o, X )EDT)

n+1 qubits

|x)a)

U; )1 () @a)

v If the function f can be computed efficiently classically, then the unitary U;
can be implemented efficiently

v If the function f can be computed classically in time polynomial in n, then
the unitary U; can be implemented using a number of elementary gates
polynomial in n

“equivalent”

n qubits (—1)7®)|x)

|x)

il
O
T
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Let f: {0,1}" — {0,1} be a Boolean function given as a black box

Xq

Classical
Algorithm

> f(X)

Goal: find an element x € {0,1}" such that f(x) = 1

Classically this can be done using 0(2") calls to the black box

(“brute force search: try all the elements x”)

There Is a quantum algorithm solving this problem
with 0(~+/2™) calls to O;

Quantum search
[Grover 96]

Example of application: guantum algorithm for Boolean satisfiability (SAT)

satisfying assignment (if such an assignment exists)

SAT: given a Boolean formula f of poly size on n variables, find a

X = one possible assignment - 2" possibilities
Black box: computes f(x) from x < poly(n) time
—> Quantum search solves SAT in O(2"2 x poly(n)) time
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k = O(+/2") times
|

_ N N N |
— - luti
qugits 0) == Her G G o —— G /ﬁ ?@ﬁ“ﬁ?
1y Gl) G*|Y) G*|)
phase:
= n = unitary O;: H@n 10) = |0) Hen [—
G WIS 3 3y 5 (-1 @) ) = —[x) N
‘ forx:;O |
W
W= I
= — X
\/ﬁxe{o,l}"
- phase: .
Property: | v W|y) = |¢) [Y) = Hen ||(;> - |?>) Hen = ()
v _ _ _ x) - —|x
W|§0> |(p> If (lpl(p> O 0) for x20 |O>
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1 .
W) = \/—M; ) A={xe{0,1|f(x) =1}  write M=|A]
1
Wp) = N M; |x) B = {x €{0,1}"| f(x) = O}
[
M n_—M |
) = >m [Ya) + o [Yp)  =sin(0/2) [h,) + cos(6/2) |Pp)
\ \
[Wa)
. .
[YP) = o z |x)
xe€{0,1}"

/mw»
2 )
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Consider the plane spanned by {|y,), [¥;)}
@)
foralla,b € Rwe have aly,) + bl,) —> — al,) + b[p,)

C> O, is a reflection about axis [,)  (558L)

L, W L
aly) + bl ") —alyp) — bl 7)
unitary O;: _ _ _ Y
%) = (—1) @) C> W is a reflection about axis [p)  (#8L)

C> G=WO; is a rotation of angle 6  ([21%K)

) = — |x)
\/ﬁxe;}" WthD)
Property:| v/ W|y) = |¢) 6
v Wlp) = =g} if (Ylp) = 0 )
%)

Os[h)
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k = O(+/2") times
|

_ N N A - | |
qurt])its |0) —] He" G G v —— G /ﬁ ?v?/l.l;\t.lg.r)]
1Y) G ) G*|Y) G*|p)
W)= o o)+ | ) = sin(6/2) ) + cos(8/2) 1)
\ \
G|yp) = sin((2k + 1)6/2) [1p,) + cos((2k + 1)8/2) |;)
GHl) ~ [P,) if (2k +1)6/2 ~ = solution witt
_ high probability
T o |on it GF[) ~ [,)
k ~ % ~ o
‘ 4y G2[)
" = sin(8/2) ~ 6/2 e
— = SIn ~ 0
2 —572’: |1/J>
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Let f: {0,1}" — {0,1} be a Boolean function given as a black box

| Classical I
X Algorithm f(X)

Goal: find an element x € {0,1}" such that f(x) = 1

Classically this can be done using 0(2"/M) calls to the black box
(“try 0(2"/M) element taken uniformly at random”)

There Is a quantum algorithm solving this problem | Quantum search
with 0(y/2™/M) calls to O; [Grover 96]

v' Works even for larger values of M
v' Can be adapted to work even if M is unknown

M. Boyer, G. Brassard, P. Hgyer, and A. Tapp. Tight bounds on
guantum searching. Fortsch.Phys.46:493-506,1998. ArXiv: 9605034.

v" M can even be estimated efficiently

G. Brassard, P. Hagyer, and A. Tapp. Quantum counting.
Proceedings of ICALP’98, pp. 820-831. Arxiv: 9805082.
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Consider a randomized procedure (or a quantum algorithm) that
solves some problem with probability p

INPUL === procedure )—V solution

(correct with
probability p)

Classically we need to repeat the algorithm O(1/p) times in order to get a
solution with high probabillity

Quantum amplitude
amplification
|Brassard- Hayer 97]

There Is a quantum algorithm that get a solution
with high probability with 0(,/1/p) repetitions

Example of application: guantum algorithm for Boolean satisfiability (SAT)

find a solution among 2" candidates (we can check if a candidate is a solution efficiently)

Procedure: take a candidate uniformly at random and check

Success probability: p=1/ 2" (if there is a unique solution)

Classically we need to repeat the procedure 0(2") times
Quantumly only 0(~/2%) repetitions are enough
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Wy Abstract
—_
5 We review some of quantum algorithms for search problems: Grover's search algorithm, its
e generalization to amplitude amplification, the applications of amplitude amplification to various
— problems and the recent quantum algorithms based on quantum walks.
—
L 1 Introduction
P Quantum computation explores the possibilities of applying quantum mechanics to computer sci-
-~ ence.  If built, quantum computers would provide speedups over conventional computers for a
Q variety of problems, The two most famous results in this area are Shor's quantum algorithms for
am factoring and finding discrete | [35] and Grover's ch algorithm !
== She nd Grover's algorithms have been followed by a lot of other results. Each of these
.‘;’I two algorithms has been generalized and applied to s other problems, New ithms and

new al

i thiic paradigms (such as adiabatic computin
simulated annealing) |

In this column, we survey some of the results on quantum algorithms, foeusing on the branch
of quantum : rch ]

21] which is the quantum connterpart of
+ heen discovered,

lgorithms inspired by Grover's ses alporithm [22].

W on quantum computing which starts with the
s, we follow a different path. We first deseribe Grover's search result and its
generalization, amplitude amplification (s«

Instead of the conventional introduction /i

backegronnds from physi

tion [2). Then, we explore what can be obtained by using
v combir

these results as “quantum black boxes™

m with methods from conventional (non-
quantum) algorithims and complexity (seetion 3). Wi

* three examples of quantum algoritlhms
of this type,

arXiv:quant-ph/0

me very simple and two more advaneed ones. After that, in section 3 we show some
simple application of Grover’s search fails but mor

(based on quantum walks) suceeed.

examples we

advanced quantum algorithms

2  Grover’s search and amplitude amplification

Grover's search algorithm is one of main quantum algorithms, The problem that it solves is very
simple to state:

*Institute for Quantum Computing and Department of Combinatories and Optimization, University of Waterloo,
e-mail: asbainis@math.uvaterloo.ca This work done at School of Mathematic
Princeton, N.J 08540, USA. Supported by Grant DMS-01112095. Any opinions

in this material are those of the anthor and do not necessarily reflect views of the

Institute for Advanced Study,

ndings and conclusions
ational Science Founds

Andris Ambainis. Quantum search algorithms.
SIGACT News, 35 (2):22-35, 2004.
ArXiv: 0504012
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Integer Factoring

[ 15=3 x5 }

[ 147573952589676412927 = 193707721 x 761838257287 J

v’ requires exponential time with the best known algorithms
(this is the basis of the widely used RSA cryptosystem)

v’ there exists a polynomial-time quantum algorithm

LT T —

=3 |f we can construct a quantum computer, we can break RSA

cryptosystem !




Integer Factoring

{ 15=3 x5 ]

[ 147573952589676412927 = 193707721 x 761838257287 J

v’ requires exponential time with the best known algorithms
(this is the basis of the widely used RSA cryptosystem)

v’ there exists a polynomial-time quantum algorithm

Designed in 1994 by Peter Shor :5‘5’ ’ .

v 2 FFourierZ#Z#HTEA
v EFFourierZ#IIZERXY A ANDEFRETEEHTETSZ & #EH
v EFFourierZ#aZ ALV T.
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H H |_ AlgO rlth m [Harrow, Hassidim, Lloyd 09]

The HHL Algorithm:
Quantum Algorithm for Problems from Linear Algebra

/




Problems Related to Matrix Multiplication

[Compute the product of two n X n matrices A and B over a field J

Determinant (DET)
[Compute the determinant of an N x N matrix over a field J

Inversion (INV)

[Compute the inverse of an N x N invertible matrix over a field J

Solution of a linear system (SYS)

[Solve the system Ax=Db, where A Is an n X n invertible matrix over a fieldj

In the classical time complexity setting, all these problems are equivalent to
matrix multiplication (they can be solved in time 0(n3) or even 0(n%373))



HHL Algorithm for “Systems of Linear Equations”

[Harrow, Hassidim, Lloyd 09]
K is called the condition number (£4%%) of A

Input: we assume that the non-zero entries can be
' accessed efficiently

v A Hern;/itian matrix A € C"X"yét has eigenvalues in the range
[-1,-1/K] U [1/k,1], and has < s nonzero entries per row

v A vector b € C" of norm 1 given as a quantum state |b)

A~ b
|A”'b|

write x = A™'b and X =
Output:

An approximation of the quantum state |x)

Compare with the task: solve the system of linear equations Ax = b
(i.e., compute A1b)



HHL Algorithm for “Systems of Linear Equations”

[Harrow, Hassidim, Lloyd 09]
K is called the condition number (£4%%) of A

Input: we assume that the non-zero entries can be
' accessed efficiently

v A Hernfitian matrix A € C"X"yét has eigenvalues in the range
[-1,-1/K] U [1/k,1], and has < s nonzero entries per row

v A vector b € C" of norm 1 given as a quantum state |b)

A~ b
|A”'b|

write x = A™'b and X =
Output:

An approximation of the quantum state |x)

Theorem ([Harrow, Hassidim, Lloyd 09])

4 )
There is a quantum algorithm that computes an approximation of [x) in

time O(log(n)s?k?/€), where ¢ is the precision of the approximation.
. /

Exponentially better than the known classical algorithms for inverting the system when s,k,e! « n

Classical conjugate gradient method: O(nsk?log(1/€)) time



HHL Algorithm for “Systems of Linear Equations”

v Exponentially better than the best classical algorithm for matrix
Inversion for sparse and well-conditioned matrices

v' Main issue: the solution is output as a quantum state

v Possible applications of the HHL Algorithm: estimate (x|M|x) for some
operator M
“extract statistics about the solution x”

applications for quantum machine learning ? [Wiebe, Braun, Lloyd 12],...

But actually we can often do the same classically [Tang 19]...
Output:

An approximation of the quantum state |x)

Theorem ([Harrow, Hassidim, Lloyd 09])

4 )
There is a quantum algorithm that computes an approximation of [x) in

time O(log(n)s?k?/€), where ¢ is the precision of the approximation.
. /

Exponentially better than the known classical algorithms for inverting the system when s,k,e! « n

Classical conjugate gradient method: O(nsk?log(1/€)) time



Phase Estimation

Given a unitary matrix U on m qubits and an eigenvector |) such that
Uly) = e?™®|y), output a value § such that [0 — 8| < 1/2¢

Superposition Controlled U Operations Measurement

10) @ . )

r qubits - QFT, !
0) @ e pr)
10) (H| A
|'U"> /jm C— U-_)o O _ Lr?l — - — O _ L‘,gr—l

This outputs a good approximation 8 with constant probability
2T—1

Complexity: roughly the complexity of applying U

/Using some additional work, we can obtain a guantum unitary circuit
that, for any |) such that U[y) = e?™9 ), maps the quantum state
0 ...0)[1)|0 ... 0) to a state close to |0 ... 0)[1)|8) for some value §

_such that 6 — 6] < 1/2r

/




HHL Algorithm for “Systems of Linear Equations”

Input: [Harrow, Hassidim, Lloyd 09]

v A Hermitian matrix A € C™*" that has eigenvalues in the range
[-1,-1/k] U [1/k,1], and has < s nonzero entries per row

v A vector b € C" given as a quantum state |b)

. _ A -~ ™
write x = A™b and X = = i — Y. B.lu:
Output: JATTD] write [b) = 2, B lu;)
—— _ Then |x) = ~|u;)
An approximation of the quantum state |x) g ;1 ,

Let A, ..., A, denote the eigenvalues of A, and uy, ..., U, the eigenvectors
The unitary matrix e?™4 has same eigenvectors, and eigenvalues e?™41, .., e?%in

Applying phase estimation for U = ¢2™4 on [0 ... 0)|u,}|0 ... 0) gives a state close to |0 ... 0)|u;)|4;)

Applying phase estimation for U = e?™4 on |0...0)|b)|0 ... 0) gives a state close to

2. B;10 ... O)|uj)|/Tj)

Theorem ([Harrow, Hassidim, Lloyd 09])
4 )
There is a quantum algorithm that computes an approximation of [x) in

time O(log(N)s?k?/€), where ¢ is the precision of the approximation.
\. /




HHL Algorithm for “Systems of Linear Equations”

Input: [Harrow, Hassidim, Lloyd 09]
Complexity depends crucially on the es per row
efficiency of applying (powers of) U b)
— Using methods for Hamiltonian simulation p .
oL this can be done in time O(log(n)s?k/¢) Write |b) = ¥ ,leuj)
' T = Then |x) = ﬁ|u-)
An approximation offghe quantum state |x) g ;1 ,

Let A, ..., A, denote the eigenvlllues of A, and uy, ..., U, the eigenvectors
The unitary matrix e?™4 has sdine eigenvectors, and eigenvalues e?™41, .., e?%in

Applying phase estimation for U = e?™4 on |0 ...0)|u;)|0 ... 0) gives a state close to |0 ... 0)[u; )| A;)

apply amplitude amplification to boost the success probability
(number of iterations depends on the 1;s) <= O(K) Iterations

_ LijPjlv=e (/174 |
normalized D
can be convwz .%IO O)IUj)W’) with.some probability depending on the 4;

Applying phase estimation for (

T4

normalized normalized

Q

|0 ... 0)|x)|0 ... 0)] using uncomputation

= 10...0)[%)|0 ... 0)

can be converted to Zj% 0 ... 0)|u;)|0 ... 0)
]




The HHL Algorithm

The HHL Algorithm:
Quantum Algorithm for Problems from Linear Algebra:

/

v" The HHL algorithm

m= Exponential “speedup” for sparse and well-conditioned matrices
What applications? Applications to machine learning?
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first paper: 1993

PHYSICAL REVIEW A

VOLUME 48, NUMBER 2

AUGUST 1993

Quantum random walks

Y. Aharonov,* L. Davidovich,! and N. Zagury!
Center for Advanced Studies and Department of Physics and Astronomy,
University of New Mezico, Albuquerque, New Mezxico 87131
(Received 1 October 1992)

We introduce the concept of quantum random walk, and show that due to quantum interference
effects the average path length can be much larger than the maximum allowed path in the corre-
sponding classical random walk. A quantum-optics application is described.

PACS number(s): 03.65.Bz, 42.50.Dv, 42.52.4+x

We introduce in this paper the notion of gquantum
random walk, which is the counterpart of classical ran-
dom walks for particles which cannot be precisely lo-
calized due to quantum uncertainties. A classical one-
dimensional random walk is defined in terms of the prob-
abilities for a particle to make a step of a given length to
the left or to the right. Quantum random walks are de-
scribed instead in terms of probability amplitudes. The
actual detection process is incorporated into the theory
by correlating each possible step to another degree of free-
dom (say spin), which plays the role of a quantum coin:
measurement of this observable will select the transition
actually undergone. Interesting effects arise when there
is a considerable overlap between the probability ampli-
tudes for going left or right. In this case the average
displacement of the particle can be well beyond the max-
imum classically allowed displacement. All these notions
are easily generalized to the multidimensional case.

come, whether the particle would be described, after the
first step, by the state |¢(zo + [)) (if the spin is up) or
by the state |¢(xzy — l)) (spin down). After measuring
the spin, thus determining the new state of the particle,
we reestablish the initial condition of the measurement
apparatus, and let the state evolve again as described by
Eq. (1). It is clear that repetition of this procedure will
lead, after N steps, to an average displacement given by
(z) = Nl(|cs|* = |c~|?). These results coincide precisely
with those expected from a classical random walk.

A more interesting outcome is obtained by making
use of the “multisided” character of quantum coins, and
considering a new pair of sides. One measures instead
the spin components along a direction (6,¢), where ¢
is the argument of c¢_/cy. The corresponding eigen-
states are |6,¢,+) = cos(8/2)|+) + exp(i¢) sin(8/2)|-)
and |8, ¢, —) = sin(8/2)|+) — exp(ig) cos(8/2)|—). Imme-
diately after the measurement, if the spin is found to be




T AR FRICKOBRER

[ Childs et al. 03]

“glued graph”

A quantum walk starting in ENTRANCE reach EXIT after poly (k) steps

A number of steps exponential in £ 1s needed for any random walk

Artificial problem
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QUANTUM WALK ALGORITHM FOR ELEMENT DISTINCTNESS”

ANDRIS AMBAINIST

Abstract. We use quantum walks to construct a new quantum algorithm for element distinctness
and its generalization. For element distinctness (the problem of finding two equal items among N
given items), we get an O(N °/3) query quantum algorithm. This improves the previous O(N:"/'*}
quantum algorithm of Buhrman et al. [STAM J. Comput., 34 (2005), pp. 1324-1330] and matches the
lower bound of Aaronson and Shi [J. ACM, 51 (2004), pp. 595-605]. We also give an O(N¥/(k+1))
query quantum algorithm for the generalization of element distinctness in which we have to find k
equal items among N items.

Key words. quantum computing, quantum query algorithms, element distinctness
AMS subject classifications. 81P68, 68Q25, 68Q10

DOI. 10.1137/50097539705447311

1. Introduction. Element distinctness is the following problem: Given numbers
Tlaunnss ey € [M], are they all distinct?

This problem has been extensively studied in both classical and quantum com-
puting. Classically, the best way to solve element distinctness is by sorting, which
requires Q(N) queries. In the quantum setting, Buhrman et al. [14] have constructed
a quantum algorithm that uses O(N3/%) queries. Aaronson and Shi (1] have shown
that any quantum algorithm requires at least Q(N?2/3) quantum queries.

In this paper, we give a new quantum algorithm that solves element distinctness
with O(N2/3) queries to z1....,: ry. This matches the lower bound of [1, 5].

Our algorithm uses a combination of the following ideas: quantum search on
graphs [2] and quantum walks [30]. While each of those ideas has been used before,
the present combination is new.

We first reduce element distinctness to searching a certain graph with vertices
S C{l,....N} as vertices. The goal of the search is to find a marked vertex. Both
examining the current vertex and moving to a neighboring vertex cost one time step.
(This contrasts with the usual quantum search [26], where only examining the current
vertex costs one time step.)

We then search this graph by quantum random walk. We start in a uniform
superposition over all vertices of a graph and perform a quantum random walk with
one transition rule for unmarked vertices of the graph and another transition rule for
marked vertices of the graph. The result is that the amplitude gathers in the marked
vertices and, after O(N?2/3) steps, the probability of measuring the marked state is a
constant.
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v For classical computational problems (i.e., problems with classical

Inputs/outputs), quantum distributed algorithms have mostly been
studied in the framework of 2-party communication complexity

v Relatively few results focusing on n >> 2 parties:

» exact quantum algorithms for leader election on anonymous networks
[Tani, Kobayashi, Matsumoto 2005]

» study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz 200¢€
lkin, Klauck, Nanongkai, Pandurangan 2014

negative results: show impossibility of quantum distributed
computing faster than classical distributed computing for many
Important problems (shortest paths, minimum spanning tree,...)

Question: can quantum distributed algorithms be useful?
(over non-anonymous networks)




BT DHER

Question: can quantum distributed algorithms be useful?

(over non-anonymous networks)

wo main models in distributed computing

Quantum can be useful!

[LG, Magniez 2018] EFIERICHEDL
(limited bandwidth) PODC’18, QIP’19
Arxiv: 1804.02917

{ CONGEST model 1

Quantum can be useful!
[LG, Nishimura, Rosmanis 2019]

(unlimited bandwidth)  STACS'19, TQC'19
Arxiv: 1810.10838

[ LOCAL model }




Classical Distributed Computing

Basic setting: non-faulty, non-anonymous, synchronous

v" network G=(V,E) of n nodes (all nodes have distinct identifiers)
v each node initially knows only the identifiers of all its neighbors (and knows n)
v synchronous communication between adjacent nodes:

on hrough each edge per round (in each direction)

pfexity: the number of rounds used
what size?

[CONGEST model: only O(log n) bits per message

“ooal =
[computation — ( local }
: ’ g Lcomputation
N
7 =

/
=/ = LT

—

LOCAL model no restrlctlon on the S|ze of each message}

local
IocaI computatlon
computatlon

co




Quantum Distributed Computing

Quantum distributed computing

Now qubits can be sent instead of bits (no prior entanglement between nodes)

more formally:

v' network G=(V, E) of n nodes (aII nodes have distinct identifiers)
--------------------- ~nd knows n)

one message of qublts through each edge per round (|n each direction)
v' each node is a quantum processor

Complexity: the number of rounds needed for the computation

-~

{LOCAL model: no restriction on the size of each message}




First Result: CONGEST model

Quantum distributed computing

Now qubits can be sent instead of bits (no prior entanglement between nodes)

n: number of nodes of the network

[CONGEST model: only O(log n) gubits per message ]

The diameter of the network can be computed in ®(y/n) rounds in
[LG, Magniez 18] f} the quantum CONGEST model but requires 8(n) rounds in the
classical CONGEST model (when the diameter is constant)




Diameter and Eccentricity

Consider an undirected and unweighted graph G =

(V.E)

The diameter of the graph is the maximum distance between two nodes

(EE)
D= maxV{d(u,v)}
u,v €

\

—d(u,v) = distance between u and v




Diameter and Eccentricity

Consider an undirected and unweighted graph G = (V,E)

The diameter of the graph is the maximum distance between two nodes

(%)
D = max {d(u,v)}
uvevlv
= max {eCC (U)} —d(u,v) = distance between u and v
uevlv

The eccentricity of a node u Is defined as
(B ID 20

ecc (u) = max {d(u,v)}

ecc (a
ecc (b
ecc (c
ecc (d

(©)
(e) e (1)
(&)

SN N’

~— —
A WWDNWW

ecc(g) =4
D=4



Classical Distributed Computing: Computing Distances

Distance from node 1 =2




Classical Distributed Computing: Computing Distances

The distances from node 1 can be computed using the Breadth-First Search algorithm
Complexity: ecc(1) rounds (< D rounds) (IBEEFERTILTY X L)

the source node sends a message to its neighbors

at the end of Round 1: each node updates its distance
(nodes that received a message at Round 1 set “dist = 1)

nodes tell new knowledge to neighbors

at the end of Round 2: each node updates its distance

Distance from node 1 =2




Classical Distributed Computing: Computing Distances

The distances from node 1 can be computed using the Breadth-First Search algorithm
Complexity: ecc(1) rounds (= D rounds)

eccentricity: ecc (u) = max {d(u,v)}

diameter: D = max {d(u,v)}

uvevr

= max {ecc (u)}

In_classical distributed computing (CONGEST model):

v’ for any fixed node u, the eccentricity ecc(u) can be computed in O(D)
rounds by the Breadth-First Search algorithm (starting at u)

v but computing the diameter (i.e., the maximum eccentricity)

requires ©(n) rounds even for constant D
[Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

We show that we can do better in the guantum setting




Computation of the Diameter in the CONGEST model

main result: sublinear-round quantum computation of the diameter whenever D=0(n)
(our algorithm uses O((log n)?) qubits of quantum memory per node)

first gap between classical and quantum in the CONGEST model for a major
problem of interest to the distributed computing community

Classical Quantum (our results)

Exact computation (upper bounds) 0 (Tl) 0 ( V nD)

[Holzer+12, Peleg+12]

[Frischknecht+12]

Exact computation (lower bounds) Q(n) ﬁ( \/7D)
n

[conditional]

number of rounds needed tg-¢ompute the diameter (n: number of nodesyD: diameter)

condition: holds for quantum distributed algorithms
using only polylog(n) qubits of memory per node

3/2-approximation (upper bounds) O(vWn + D) 0 (3\/ nD + D)

[Lenzen+13, Holzer+14]

the tilde notation removes polylog(n) factors

(3/2-¢)-approximation (lower bounds) Q(n) Q(+/n + D) [unconditional]
[Holzer+12, Abboud+16]




Our Upper Bound

main result: sublinear-round quantum computation of the diameter whenever D=0(n)
(our algorithm uses O((log n)?) qubits of quantum memory per node)

first gap between classical and quantum in the CONGEST model for a major
problem of interest to the distributed computing community

Classical Quantum (our results)

Exact computation (upper bounds) 0 (Tl) 0 ( V nD)

[Holzer+12, Peleg+12]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)



Quantum Distributed Computation of the Diameter

Computation of the diameter (decision version)

Given an integer d, decide if diameter 2 d
there is a vertex u such that ecc (u) 2d

This is a search problem
ldea: try to use Grover search

Define the function f: V — {0,1} such that f(u) = {(1) g;gmg: d

Goal: find u such that f(u) = 1 (or report that no such vertex exists)

There is a quantum algorithm for this search problem | Quantum search
using 0(+/n) calls to a black box evaluating f [Grover 96]

n=|V| (number of nodes) U — —> f(u)




Recap: Grover Algorithm

m = O(log n) O(+/n) times
[ | 1
m — I N solution
qubits 107 = H&" — —— 7N (W.h.p.)
G G G
oracle I N I
workspace I S E—
depends on f /
(depends on the network ohase:
m
qubits Hem |0) — |0)
oracle |x) = —|x)
— f(x) for x>0
G — oracle [x) = (=1 %)
workspace

\\ — Independent of f

To implement the oracle, the leader node needs to communicate with the other nodes

Total number of rounds of communication = O(y/n x number of rounds to implement the oracle)




Recap: Grover Algorithm

can:@ %8ne locally O(/n) times can be done locally

t communlcatlon) (I.e., without communication)

A
[ 1
m — I N solution
qubits 107 = H®" — —— 7N (W.l;].lp.)
oracle We compute the diameter by implementing
TR REI0E this circuit in the distributed setting:
One arbitrary node (the “leader”) will
depends jmplement this circuit
(depends on the net 7 Shase:
m m
qubits Hem |0) — [0) H®
oracle |x) = —|x)
G — f(x) for x>0
— Oracle |x) - (_1) |x>
workspace
\\ — Independent of f

To implement the oracle, the leader node needs to communigate lyath dnpe dgeliiyodes

Total number of rounds of communication = O(y/n x number of rounds to implement the oracle)




Implementatic

_ uev
Zau|u)|0) : E Node c introduces 3 registers zuevaum)a u)c|0) |0) |0)
uev i Node c applies CNOTs Z k) [u) )
Node c sends the registers to b,e,d Z Evau|u>a [w)cludplweludg

Node a applies CNOTSs Zuevaulwalu)

_ Node a sends the second register to c z aylualu)c

Node a introduces 1 register z t,|1)4]0)
uev

Example:
V:{a,b,C,d,E,f,g}
here leader = node a

Initially node a owns E a,|u)q
uev

1. “Broadcast” this state, which gives [ecc(a) < D rounds]

> aulwaludp ludchn)gludelung

uev

2. The nodes implement the classical protocol [O(D) rounds]
for computing the eccentricity of u, which gives

D ayualwplwclugluelu) wglecew)a

uev

3. The nodes revert Step 1 [ecc(a) < D rounds]




Implementation of the Oracle in O(D) rounds

Zcxulu)lO) 1 — oracle— | Zaulu)lecc(u))

uev . ] uev

Example: N Z \

v={a,b,c,d,e.f,g) Initially node a owns a,lu)a
uev

here leader = node a

1. “Broadcast” this state, which gives [ecc(a) < D rounds]

> aulwaludp ludchn)gludelung

uev

2. The nodes implement the classical protocol [O(D) rounds]
a for computing the eccentricity of u, which gives

D ayualwplwclugluelu) wglecew)a

O e

3. The nodes revert Step 1 [ecc(a) < D rounds]




Usual Grover Algorithm

_ can be done locally O(Vm times . can be done locally
m\_ ofogn) (i.e., without communication) (\/ﬁl) (.e., without communication)
\ [ \
qurgits |O> ; H&m E— S meiure
oracle We compute of the diameter by implementing | solution
THETEEEE this circuit in the distributed setting:
One arbitrary node (the “leader”) will
depends implement this circuit

m
| 0) — |0) Hem
ubits HO™ |
- %) = —|x)

G r— for x>0
— oracle

workspace

(depends on the grap.y \ 7 Shase:
A

oracle |
x) > (—1)T®|x)

Independent of f
To implement the oracle, the leader node needs to communicate with the other nodes

Total number of rounds of communication = O(y/n x number of rounds to implement the oracle)

= O(ynx D)




Quantum Distributed Computation of the Diameter: Summary

—

/ Classically in O(D) rounds it is possible to simultaneously compute the\
eccentricities of D vertices [Peleg+12]

Thus we can instead do a Grover search over groups of D
vertices (there are n/D groups) In

\_ O0(y/n/D X D) = 0(/nD) rounds .

uantum distributed algorithm computing the diameter

v The network elects a leader A
v' The leader locally implements Grover algorithm. Each call to the
black box is Implemented by using the standard O(D)-round
. C assical algorithm computing the eccentricity. y
Complexity: 0(y/n X D) rounds converted into a

N
O(D)-round classical

With further work, the COMPIEXItY | wemp{ distributed algorithm for the == f(U)
can be reduced to 0(v/nD) rounds eccentricity




Our Upper Bound

main result: sublinear-round quantum computation of the diameter whenever D=0(n)
(our algorithm uses O((log n)?) qubits of quantum memory per node)

first gap between classical and quantum in the CONGEST model for a major
problem of interest to the distributed computing community

Classical Quantum (our results)

Exact computation (upper bounds) 0 (Tl) 0 ( V TLD)

[Holzer+12, Peleg+12]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)




The Lower Bounds

Classical Quantum (our results)

Exact computation (lower bounds) | Q.(n) 9(\/% + D) [unconditional]
[Frischknecht+12] Q( TlD) [conditional]

via two-party commuymication complexiW disjointness function (DISJ)

classical lower bound
v reduce DISJ to the distributed computatiof of diameter [Frischknecht+12]
v the (two-party) communication complexity/of DYSJ,, is Q(n) bits [Kalyanasundaram+92]
. /
unconditional quantum lower bound /

v same reduction from DISJ to the distributed computation of diameter
v" the (two-party) communication complexity of DISJ, is Q(+/n) qubits [Razborov03]

/ remark: D is an obvious lower bound

conditional gquantum lower bound

v Claim: if the quantum distributed algorithm for diameter uses few guantum memory
per node, then the reduction can be adjusted to give a two-party protocol for DISJ
using few messages (idea: send communication in batches)

v' the (two-party) r-message quantum communication complexity of DISJ,, is
Q(n/r + r) qubits [Braverman+15]




Summary

main result: sublinear-round quantum computation of the diameter in the
CONGEST model (when D is small enough)

Classical Quantum (our results)

Exact computation (upper bounds) 0 (n) 0 ( \ TLD)
[Holzer+12, Peleg+12]

Q(/n + D) [unconditional]

Exact computation (lower bounds) | Q(n) —
[Frischknecht+12] Q(vVnD) [conditionall

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)



Interesting Research Direction

main result: sublinear-round quantum computation of the diameter in the
CONGEST model (when D is small enough)

Classical Quantum (our results)

Exact computation (upper bounds) 0 (n) 0 ( \ nD)
[Holzer+12, Peleg+12]

Q(n) Q(y/n + D) [unconditional]
[Frischknecht+12] ﬁ \ In D) [conditional]

Exact computation (lower bounds)

Our upper bound is obtained by showing how to implement quantum search
In a distributed setting

more generally, we give a generic framework
for distributed guantum optimization (see paper)

v' Research Direction: find other applications of our technique



Quantum Distributed Computing

Quantum distributed computing

Now qubits can be sent instead of bits (no prior entanglement between nodes)

n: number of nodes of the network

@NGEST model: only O(log n) qubits per message ]

Whereas the time distinction between LOCALTS and LOCALTE given by
Theorem [1]is remarkable (since it considers the feasibility of solving problems,

[LG, N or when discussing connected graphs, a speed-up from 2(n) to 0 communication
rounds), the situation is less clear between LOCALTQ and LOCAL. Although a
speed-up factor of 2 as expressed by Proposition [2/1ooks like a natural limit, the

E authors know of no conclusive arguments to show that it cannot be increased

rounds In
S In the
ant)

further.
/ \\“/ unbounded amount of quantum communication A
Gavoille et There is a comp VS. 2

al. 09] v |quantum LOCAL( unbounded amount of classical communication

Nishimura 18] guantum LOCAL model but requires

rounds classically.

LG, Rosmanis,$ There is a computational problem t be solved ir@ounds In the




Superiority of the Quantum LOCAL model

Also used in some of the recent results on quantum shallow circuits
[Bravyi, Gosset, Konig 18]

[We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 07] ]

LG, Rosmanis,$ There I1s a computational problem thatcan be solved ir@ounds In the
Nishimura 18] |quantum LOCAL model but requirerounds classically.




Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)

Each “corner” gets a bit as input
Each node will output one bit

multiple of 3

n/3 nodes

n/3 nodes

[We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 07/] ]

[LG, Rosmanis
Nishimura 18]

©

There Is a computational problem thatcan be solved ir@ounds In the
guantum LOCAL model but requirerounds classically.




Superiority of the Quantum LOCAL model

multiple of 3 b, n=18

Consider a ring of size n (seen as a triangle) l/. 2y

Each “corner” gets a bit as input
Each node will output one bit

215 v\
214 «_ Ze
Z13 /27
~O-O0-0~-0—0—0
AN
3 Zip 217 Zi9 Zg9 Z

8



Superiority of the Quantum LOCAL model

multiple of 3 b, n=18

Consider a ring of size n (seen as a triangle) l/. 2y

Each “corner” gets a bit as input 218 w_

Each node will output one bit 217 w_
Define the following four bits: 216 «_

Z
mp = z2,Pz,Dz, SN

(parity of the outputs of the nodes of even index on the right) 214 " Z6
mp = zgfz10D21> 213 ~ L7
(parity of the outputs of the nodes of even index on the bottom) L 7\ O\ Y
NN/ AN N
my = Z140216DZ15 / l l l l l b
(parity of the outputs of the nodes of even index on the left) b 2
Z12 211 Z10 Zg Zg

Moga = Z1D23DZsDZ;D29D211D213D215D 217
(parity of the outputs of all the nodes of odd index)



Superiority of the Quantum LOCAL model

multiple of 3 b, n=18

Consider a ring of size n (seen as a triangle) l/. 2y

Each “corner” gets a bit as input 218 w_

Each node will output one bit 217 w_
Define the following four bits: 216 «_

Z
mp = Z2,0z, Dz, SN
(parity of the outputs of the nodes of even index on the right) Z 14w

mp = zglbz,0Dz1 213 ~ Z7
(parity of the outputs of the nodes of even index on the bottom) N /7N N\ Y

NN N4 ,\
my = Z140216DZ13 / l l l l l b,
Mogq = Z1DZ3DZsD 27D 29D 211D 213D215D217 0 Z12 211 Z10 Zg9 Zg

Claim 1:| There is a 2-round quantum algorithm that samples from the uniform distribution
over all binary strings (z4, z,, ..., z,,) € {0,1}" satisfying the following condition:

(Moda =0 if (by, by, b3) =(0,0,0)
Moga @ mp=1 if (by, by b3) = (1,1,0)
Mpga ® mg=1 if (by, by by) =(0,1,1)
\Moaa ® my=1 if (by, by b3) =(1,0,1)

.




In the LOCAL model, any classical algorithm that samples (even

Claim 2: _ R
approximately) from the same distribution must use at lea @n unds
multiple of 3 b, n=18
Consider a ring of size n (seen as a triangle) l/. 2y

Each “corner” gets a bit as input 218 w_

Each node will output one bit 217 w_
Define the following four bits: 216 «_

Z
mp = 2,0z, Pz, 5w

(parity of the outputs of the nodes of even index on the right) Z 14w

mp = zglbz,0Dz1 213 ~ Z7
(parity of the outputs of the nodes of even index on the bottom) NN N\ N Y

NN N4 ,\
my = Z140216DZ13 / l l l l l b,
Moga = Z1DZ3DZsDz7D29D211D213D215D 217 0 Z12 211 Z10 Zg Zg

Claim 1:| There isnd guantum algorithm that samples from the uniform distribution
over all binary strings (z4, z,, ..., z,,) € {0,1}" satisfying the following condition:

(Mogq = 0 if (by, by, bs3) = (0,0,0)
Mogq ® mg=1 if (by, b, b3) = (1,1,0)
Mpga ® mg=1 if (by, by by) =(0,1,1)
\Moaa ® my=1 if (by, by b3) =(1,0,1)

A




1] Imm m N

(f

3. Each corner node measures its qubit in the X basis if

(

1. The nodes prepare the graph state corresponding to
the whole triangle
(this can be done in 2 rounds --- see next slides)

2. Each non-corner node measures its qubit in the X
basis and then outputs the bit corresponding to the
measurement outcome
(N0 communication)

Its input bit iIs O, or measures it in the Y basis if its input
bit Is 1, and then outputs the bit corresponding to the
measurement outcome

(no communication)

my = Z14m218 / l l
Mygq = 21 DPz23DzsDz,DzoD2z, 1 Dzf5D215D 74, b3 Z1o Zq4

Claim 1:| There is a 2-round guantum algorithm that samples from the uniform distribution

over all binary strings (z4, z,, ..., z,,) € {0,1}" satisfying the following condition:

(Mogq = 0 if (by, by, bs3) = (0,0,0)
Mogq ® mg=1 if (by, b, b3) = (1,1,0)
Mpga ® mg=1 if (by, by by) =(0,1,1)
\Moaa ® my=1 if (by, by b3) =(1,0,1)

.




Claim 2:

In the LOCAL model, any classical algorithm that samples (eue
approximately) from the same distribution must use at leasi ounds

v In any classical protocol using less than n/6 rounds:

mpg IS an affine function of b, and b,

mg IS an affine function of b, and b,

m,;, Is an affine function of b, and b,
m,qq IS an affine function of b,, b, and b,

v Such functions cannot satisfy all the linear conditions of Claim 1

LThe proof is again almost the same as in

mp = 2,2z, Dz, [Barrett, Caveg,l dEastin, Elliot, Pironio 07] Z,
(parity of the outputs of the nodes of even index on the right) N N\
NIV AN/
I |
Moga = Z1DZ3DZ5DZ,DZ2oD 211D 21302150217 l ! ! b2
(parity of the outputs of all the nodes of odd index) 3 212 le ZlO 29 28

Claim 1:| There is(a 2-rgund quantum algorithm that samples from the uniform distribution
over all binary strings (z4, z,, ..., z,,) € {0,1}" satisfying the following condition:

(Mygq = 0 if (by,b,, bs) = (0,0,0)
Moqa ® mg=1 if (by, b, b3) =(1,1,0)
Mpga ® mg=1 if (by, by by) =(0,1,1)
| Moaa D My, = 1 if (by, by bs) = (1,0,1)

.




In the LOCAL model, any classical algorithm that samples (even

Claim 2: _ R
approximately) from the same distribution must use at lea @n unds
multiple of 3 b, n=18
Consider a ring of size n (seen as a triangle) l/. 2y

Each “corner” gets a bit as input 218 w_

Each node will output one bit 217 w_
Define the following four bits: 216 «_

Z
mp = 2,0z, Pz, 5w

(parity of the outputs of the nodes of even index on the right) Z 14w

mp = zglbz,0Dz1 213 ~ Z7
(parity of the outputs of the nodes of even index on the bottom) NN N\ N Y

NN N4 ,\
my = Z140216DZ13 / l l l l l b,
Moga = Z1DZ3DZsDz7D29D211D213D215D 217 0 Z12 211 Z10 Zg Zg

Claim 1:| There isnd guantum algorithm that samples from the uniform distribution
over all binary strings (z4, z,, ..., z,,) € {0,1}" satisfying the following condition:

(Mogq = 0 if (by, by, bs3) = (0,0,0)
Mogq ® mg=1 if (by, b, b3) = (1,1,0)
Mpga ® mg=1 if (by, by by) =(0,1,1)
\Moaa ® my=1 if (by, by b3) =(1,0,1)

A




Preparing the Graph State of a Network in 2 Rounds

j0)+]1) | works for any network

1. Each node prepares one qubit in state
2. Each node prepares one ancilla qubit initialized to |0) for each edge

3. For each edge a controlled-Z operation is implemented by using
the ancilla qubits in two rounds of communication )

0 10) (

1 0 0 0]
10 1. 0 O
(2 = 0 01 O
< second round of communication 0 0 0 -1
1 0 0 O]
cs — 0O 1 0 O
first round of communication 0 0 1 0
0 0 0 1.
CS?2=CZ
_ e |0)+]1)
: ‘ o- @ : one qubit initialized to state N
@ : one ancilla qubit initialized to state |0)

Open problem: can we doitin 1 round?




Conclusions

v We have shown that in the CONGEST model the diameter of the network
can be computed faster using quantum distributed algorithms
(for constant diameter: ©(y/n) rounds quantumly vs. ©(n) rounds classically)

v" We have shown that in the LOCAL model quantum distributed algorithms
can also be faster, at least for some computational task
(for our problem: 2 rounds quantumly vs. ©(n) rounds classically)

Interesting research directions:

v Find other applications of quantum distributed algorithms in the
CONGEST and LOCAL model

v Prove the superiority of quantum distributed algorithms in other models

~

Recent result /0(n1/4)-round quantum algorithm for the All-Pairs
[lzumi, LG 2019[:| Shortest Path problem in the CONGEST-CLIQUE model
_(classically the best known is 0(n'/?) rounds)
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