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Main results

• Google [Arute’19]: 200s quantum vs. 10,000 years classical
• Our result: 10,000 years -> < 20 days
• Core contribution: an efficient algorithm for tensor network contraction

Quantum supremacy is a process, without an unequivocal “first” demonstration
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Introduction01 Google's claim of 
quantum supremacy



classical regime

“quantum” regime

Quantum 
“supremacy”

~100 qubits

An early demonstration of the 
usefulness of quantum computing

Quantum Supremacy

Definitely before fault-tolerance;
even before NISQ



Quantum supremacy: 3 components

Any task,

useful or 
not

a quantum 
computer can do

no classical 
computers 

can do

*Quantum computers* doing 
*some task* that classical 
computers *cannot* do



Quantum supremacy proposals

Theoretical proposals:
• Boson Sampling [AA`10]
• QAOA [FH `16]
• IQP circuits [BJS`11]
• Random circuit sampling [BFNV`18]
• ...

Experiment(s):

Google RCS [Arute+19]



Google random circuit sampling: basics

A distribution of quantum circuits 𝒟 over a circuit family 𝒞

Execute circuit 𝑈 ← 𝒟 ; sample on the computational basis

Ideal distribution 𝑝𝑈 : Pr 𝑋 = 𝑥 = |⟨𝑥|𝑈|0⟩|2

In reality: sample from a distribution ෤𝑝𝑈 that is “close” to 𝑝𝑈

Multiplicative error? Additive error? Linear XEB



Replace expectation by sample mean:

• Linear w.r.t. ෤𝑝𝑈
• 𝐹 𝑈𝑛, 𝑝𝑈 = 0;
• 𝐹 𝑝𝑈, 𝑝𝑈 = 1, under Porter-Thomas assumption
• 𝐹(⋅, 𝑝𝑈) DOES NOT range in [0,1]

Linear cross entropy benchmarking
[Arute+, 19]

𝐹 ෤𝑝𝑈, 𝑝𝑈 ≔ 2𝑛 ⋅ 𝔼𝑋∼ ෤𝑝𝑈 𝑝𝑈 𝑋 − 1 = 2𝑛 ෍

𝑥∈ 0,1 𝑛

𝑝𝑈 𝑥 ⋅ ෤𝑝𝑈 𝑥 − 1

𝐹𝒳 ≔ 2𝑛
1

|𝒳|
෍

𝑥∈𝒳

𝑝𝑈 𝑥 − 1

Task: output samples 𝒳 such that 𝐹𝒳 > 0



Google's experiment [Arute+, 19]

𝑛 = 53 qubits; 𝑚 = 20 layers of 2-qubit gates
2-qubit gates calibrated to the best; one qubit gate chosen randomly

1 million samples; F = 0.2% in 200s 



Google's claim of quantum supremacy

a task

quantum 
capability

classical 
incapability

Sycamore chip: 53 qubits, 200s

GRCS/ linear XEB10,000 years on Summit



Our result

10,000 years -> < 20 days

a task:

GRCS

quantum 
capability

classical 
incapability

?



Results02 Our result: 20 days



Reducing linear XEB to tensor network contraction [MFIB`18]

tensor network 
contraction

calculate 
amplitudes

rejection 
sampling

a few genuine 
samples

sample from 
mixture of ideal 

and uniform

pass the linear 
XEB



How many samples are needed?

• Sample from mixture of 𝑝𝑈 and 𝑈𝑛: 𝑝𝑓 = 𝑓 ⋅ 𝑝𝑈 + 1 − 𝑓 ⋅ 𝑈𝑛 [Villalonga+, 19]

• Linear XEB = f
• With 𝑀 samples, only need 𝑓 ⋅ 𝑀 “genuine” samples; uniformly chosen rest

Sample 106 × 0.2% = 2000 “genuine” samples



Reduction to probability calculation

Rejection sampling:
1. Uniformly sample 𝑋 ∼ {0,1}𝑛

2. Accept 𝑋 with probability 
𝑝𝑈 𝑋

max
𝑥∈{0,1}^𝑛

𝑝𝑈(𝑥)

3. Allowing distortion: accept with probability 
max 𝑝𝑈 𝑋 ,𝐾∗2−𝑛

𝐾∗2−𝑛

4. Compute 𝑀 ≫ 𝐾 samples per batch for certainty

Sampling <- computing 𝑀 = 64 probabilities per sample



Porter-Thomas statistics

Random circuit sends |0⟩ to a typical point in the hypersphere

Most bitstrings are around average; enables rejection sampling

Probability follows the Porter-Thomas statistics



Reduction to tensor network contraction

Efficiently calculate 64 amplitudes *at once*:

randomly post-select
on 47 qubits ->

<- full amplitudes
on 6 qubits



Summary

tensor network 
contraction

calculate 64 
amplitudes

rejection 
sampling

2000x genuine 
samples

sample from 
mixture of ideal 

and uniform

pass the linear 
XEB



Techniques03 Efficient tensor 
network contraction



Tensors & tensor networks

Tensors: Multi-dimensional arrays
• Vectors are 1-tensors; matrices are 2-tensors

Tensor networks: tensors 
where indices merged together 
are identified (sometimes 
summed up)

Natural representation for 
quantum circuits (amplitudes)



Tensors network contraction

• Counting problem; #P-complete
• Exponential time/space in worst case

Parallel & 
space/time-

efficient algorithm

Experiment on 
GPU cluster



Contraction of tensor networks: 
the Schrödinger way

! " #$

Step 1

Step 2

Step 3

! ! " = #

#

#

$

#

%

$%#%%! $ &#$ " ' ! #

State-vector update ->
Sequential pairwise multiplication

Sequential pairwise contraction: Binary 
contraction tree

• Significant improvement for shallow 
quantum circuits

• Hard to find a good tree

• Sequential algorithm
• Hard space lower bound



Contraction of tensor networks: 
the Feynman way

Feynman path integral ->
Enumeration over indices

Complete Feynman path integral:
• Time complexity: 2𝑚

• Space complexity: 𝑝𝑜𝑙𝑦 𝑛,𝑚

• Good space complexity; highly parallel

• Prohibitive time complexity



Contraction scheme: hybriding Schrödinger and Feynman

Method Schrödinger ??? Feynman

Time 𝑂(𝑛 ⋅ 2𝑛) ??? Ω(2𝑚)

Space Ω(2𝑐𝑤(𝑇)) ??? 𝑂∗(1)

partial parallelization

Sequential Parallel



Contraction scheme: hybriding
Schrödinger and Feynman [CZH18]

• Each assignment yields a subtask
• subtasks have identical structures
• results summed up at the end

• Trade space for time; no hard limit

Single-time tree constuction + embarrassing parallelism

Goal: minimize time complexity, s.t. space constraint



Putting it all together

contraction 
tree

index 
slicing

Efficient 
contraction 

scheme

Combinatorial
optimizations



Tensor network contraction : timeline

[MS'08]

• Tree-decomposition

• Minimizing highest-cost tree node

[BIS+’17]

• Hypergraph formulation

• Simplifying diagonal gates

[CZH+'18]

• Dynamic slicing

• Parallelization by index slicing

[GK'20]

• Hypergraph decomposition

• Minimizing overall cost of the tree

[HZN+'20]

• Stem optimization

• Reducing parallelization overhead on stem



Finding good contraction schemes: stems & branches

Dominating nodes come in a short path



Putting it all together

Find a 
contraction 

tree

Efficient 
parallelization

Construction of the stem
Hypergraph decomposition

Optimization

Choosing indices to slice
Local optimization on stem



Results

For m=20, total time complexity 6.66e18 FLOPs per sample; space complexity 4GiB
25 sliced indices; individual subtask time complexity 1.98e11 FLOPs

> 103 improvement
for m=20 w.r.t. [GK’20]



Efficient 
scheme

GPU implementation

Network 
benchmarking

Experimental verification: 19.3 days

2000 * 2**25 subtasks,
each with 1.98e11 FLOPs

0.7s per subtask on 
Nvidia V100;
GPU efficiency ~15%

No significant 
latency observed on 
Alibaba Cloud



Discussion04 Comparison with 
other results, and 
discussion on 
supremacy



Exact algorithms Approximate 

algorithms

Experiments Few amplitudes

[Ours, GK’20, Arute+’19]

20 days

SFA

[MFIB+’18]

10,000 years

Proposals Full state vector

[Pednault+’19]

2.5 days

MPS-based 

[Zhou+’20]

???



The SFA algorithm [MFIB,`18]

Break down the full state into superposition of product states, and pick randomly 
from there

• Suitable for target fidelity

• One-shot computation; does not scale with number of samples

• Number of subtasks is prohibitively large: 2**66*0.2% >> 2**25*2000

Overall fidelity ~ 0.2% in 10,000 years on Summit



Full state vector approach [Pednault+,`19]

Full state-vector update, done with secondary memory: 2.5 days

• Computation only needs to be done once

• Requires huge storage; hard to extend to more qubits
• Majority of time spent on memory I/O

More of a thought-experiment: no actual experiment  / code supporting



MPS-based approach [Zhou+,`20]

Approximately simulate the quantum circuit using MPS

• Cost grows polynomially up to some fidelity threshold, and then exponentially

• Very efficient when fidelity requirement is lower than threshold

Variants of Google circuit considered; the quantum supremacy circuit not yet attempted



How far can our approach go?

Inefficiencies observed in the algorithm & the implementation: over 100x

Flexible trade-off between time and space

Heavy preprocessing to find trees & slices

Scales linearly with number of samples



Summary

Focusing on making both classical and quantum useful!

The boundary between classical and quantum is moving & blurry

Improvements on both classical & quantum
Algorithmic/ complexity-theoretic 

understanding of the task

Efficient parallelized tensor network contraction;
Quantum supremacy task in < 20 days



thanks


