
Classical Simulation of Quantum
Supremacy Circuits

Cupjin Huang, Alibaba Quantum Laboratory
June 2020

arXiv:2005.06787 : [HZN+20]
arXiv:1805.01450 : [CZH+18]
arXiv:1907.11217 : [ZHN+19]

Main results

• Google [Arute’19]: 200s quantum vs. 10,000 years classical
• Our result: 10,000 years -> < 20 days
• Core contribution: an efficient algorithm for tensor network contraction

Quantum supremacy is a process, without an unequivocal “first” demonstration

01 Google's claim of
quantum supremacy

02 Our result: pushing
10,000 years to 20 days

03 Efficient tensor
network contraction

Contents
CONTENTS

04
Comparison with other
results, and discussion
on supremacy

Introduction01 Google's claim of
quantum supremacy

classical regime

“quantum” regime

Quantum
“supremacy”

~100 qubits

An early demonstration of the
usefulness of quantum computing

Quantum Supremacy

Definitely before fault-tolerance;
even before NISQ

Quantum supremacy: 3 components

Any task,

useful or
not

a quantum
computer can do

no classical
computers

can do

Quantum computers doing
some task that classical
computers *cannot* do

Quantum supremacy proposals

Theoretical proposals:
• Boson Sampling [AA`10]
• QAOA [FH `16]
• IQP circuits [BJS`11]
• Random circuit sampling [BFNV`18]
• ...

Experiment(s):

Google RCS [Arute+19]

Google random circuit sampling: basics

A distribution of quantum circuits 𝒟 over a circuit family 𝒞

Execute circuit 𝑈 ← 𝒟 ; sample on the computational basis

Ideal distribution 𝑝𝑈 : Pr 𝑋 = 𝑥 = |⟨𝑥|𝑈|0⟩|2

In reality: sample from a distribution 𝑝𝑈 that is “close” to 𝑝𝑈

Multiplicative error? Additive error? Linear XEB

Replace expectation by sample mean:

• Linear w.r.t. 𝑝𝑈
• 𝐹 𝑈𝑛, 𝑝𝑈 = 0;
• 𝐹 𝑝𝑈, 𝑝𝑈 = 1, under Porter-Thomas assumption
• 𝐹(⋅, 𝑝𝑈) DOES NOT range in [0,1]

Linear cross entropy benchmarking
[Arute+, 19]

𝐹 𝑝𝑈, 𝑝𝑈 ≔ 2𝑛 ⋅ 𝔼𝑋∼ 𝑝𝑈 𝑝𝑈 𝑋 − 1 = 2𝑛

𝑥∈ 0,1 𝑛

𝑝𝑈 𝑥 ⋅ 𝑝𝑈 𝑥 − 1

𝐹𝒳 ≔ 2𝑛
1

|𝒳|

𝑥∈𝒳

𝑝𝑈 𝑥 − 1

Task: output samples 𝒳 such that 𝐹𝒳 > 0

Google's experiment [Arute+, 19]

𝑛 = 53 qubits; 𝑚 = 20 layers of 2-qubit gates
2-qubit gates calibrated to the best; one qubit gate chosen randomly

1 million samples; F = 0.2% in 200s

Google's claim of quantum supremacy

a task

quantum
capability

classical
incapability

Sycamore chip: 53 qubits, 200s

GRCS/ linear XEB10,000 years on Summit

Our result

10,000 years -> < 20 days

a task:

GRCS

quantum
capability

classical
incapability

?

Results02 Our result: 20 days

Reducing linear XEB to tensor network contraction [MFIB`18]

tensor network
contraction

calculate
amplitudes

rejection
sampling

a few genuine
samples

sample from
mixture of ideal

and uniform

pass the linear
XEB

How many samples are needed?

• Sample from mixture of 𝑝𝑈 and 𝑈𝑛: 𝑝𝑓 = 𝑓 ⋅ 𝑝𝑈 + 1 − 𝑓 ⋅ 𝑈𝑛 [Villalonga+, 19]

• Linear XEB = f
• With 𝑀 samples, only need 𝑓 ⋅ 𝑀 “genuine” samples; uniformly chosen rest

Sample 106 × 0.2% = 2000 “genuine” samples

Reduction to probability calculation

Rejection sampling:
1. Uniformly sample 𝑋 ∼ {0,1}𝑛

2. Accept 𝑋 with probability
𝑝𝑈 𝑋

max
𝑥∈{0,1}^𝑛

𝑝𝑈(𝑥)

3. Allowing distortion: accept with probability
max 𝑝𝑈 𝑋 ,𝐾∗2−𝑛

𝐾∗2−𝑛

4. Compute 𝑀 ≫ 𝐾 samples per batch for certainty

Sampling <- computing 𝑀 = 64 probabilities per sample

Porter-Thomas statistics

Random circuit sends |0⟩ to a typical point in the hypersphere

Most bitstrings are around average; enables rejection sampling

Probability follows the Porter-Thomas statistics

Reduction to tensor network contraction

Efficiently calculate 64 amplitudes *at once*:

randomly post-select
on 47 qubits ->

<- full amplitudes
on 6 qubits

Summary

tensor network
contraction

calculate 64
amplitudes

rejection
sampling

2000x genuine
samples

sample from
mixture of ideal

and uniform

pass the linear
XEB

Techniques03 Efficient tensor
network contraction

Tensors & tensor networks

Tensors: Multi-dimensional arrays
• Vectors are 1-tensors; matrices are 2-tensors

Tensor networks: tensors
where indices merged together
are identified (sometimes
summed up)

Natural representation for
quantum circuits (amplitudes)

Tensors network contraction

• Counting problem; #P-complete
• Exponential time/space in worst case

Parallel &
space/time-

efficient algorithm

Experiment on
GPU cluster

Contraction of tensor networks:
the Schrödinger way

! " #$

Step 1

Step 2

Step 3

! ! " = #

#

#

$

#

%

$%#%%! $ &#$ " ' ! #

State-vector update ->
Sequential pairwise multiplication

Sequential pairwise contraction: Binary
contraction tree

• Significant improvement for shallow
quantum circuits

• Hard to find a good tree

• Sequential algorithm
• Hard space lower bound

Contraction of tensor networks:
the Feynman way

Feynman path integral ->
Enumeration over indices

Complete Feynman path integral:
• Time complexity: 2𝑚

• Space complexity: 𝑝𝑜𝑙𝑦 𝑛,𝑚

• Good space complexity; highly parallel

• Prohibitive time complexity

Contraction scheme: hybriding Schrödinger and Feynman

Method Schrödinger ??? Feynman

Time 𝑂(𝑛 ⋅ 2𝑛) ??? Ω(2𝑚)

Space Ω(2𝑐𝑤(𝑇)) ??? 𝑂∗(1)

partial parallelization

Sequential Parallel

Contraction scheme: hybriding
Schrödinger and Feynman [CZH18]

• Each assignment yields a subtask
• subtasks have identical structures
• results summed up at the end

• Trade space for time; no hard limit

Single-time tree constuction + embarrassing parallelism

Goal: minimize time complexity, s.t. space constraint

Putting it all together

contraction
tree

index
slicing

Efficient
contraction

scheme

Combinatorial
optimizations

Tensor network contraction : timeline

[MS'08]

• Tree-decomposition

• Minimizing highest-cost tree node

[BIS+’17]

• Hypergraph formulation

• Simplifying diagonal gates

[CZH+'18]

• Dynamic slicing

• Parallelization by index slicing

[GK'20]

• Hypergraph decomposition

• Minimizing overall cost of the tree

[HZN+'20]

• Stem optimization

• Reducing parallelization overhead on stem

Finding good contraction schemes: stems & branches

Dominating nodes come in a short path

Putting it all together

Find a
contraction

tree

Efficient
parallelization

Construction of the stem
Hypergraph decomposition

Optimization

Choosing indices to slice
Local optimization on stem

Results

For m=20, total time complexity 6.66e18 FLOPs per sample; space complexity 4GiB
25 sliced indices; individual subtask time complexity 1.98e11 FLOPs

> 103 improvement
for m=20 w.r.t. [GK’20]

Efficient
scheme

GPU implementation

Network
benchmarking

Experimental verification: 19.3 days

2000 * 2**25 subtasks,
each with 1.98e11 FLOPs

0.7s per subtask on
Nvidia V100;
GPU efficiency ~15%

No significant
latency observed on
Alibaba Cloud

Discussion04 Comparison with
other results, and
discussion on
supremacy

Exact algorithms Approximate

algorithms

Experiments Few amplitudes

[Ours, GK’20, Arute+’19]

20 days

SFA

[MFIB+’18]

10,000 years

Proposals Full state vector

[Pednault+’19]

2.5 days

MPS-based

[Zhou+’20]

???

The SFA algorithm [MFIB,`18]

Break down the full state into superposition of product states, and pick randomly
from there

• Suitable for target fidelity

• One-shot computation; does not scale with number of samples

• Number of subtasks is prohibitively large: 2**66*0.2% >> 2**25*2000

Overall fidelity ~ 0.2% in 10,000 years on Summit

Full state vector approach [Pednault+,`19]

Full state-vector update, done with secondary memory: 2.5 days

• Computation only needs to be done once

• Requires huge storage; hard to extend to more qubits
• Majority of time spent on memory I/O

More of a thought-experiment: no actual experiment / code supporting

MPS-based approach [Zhou+,`20]

Approximately simulate the quantum circuit using MPS

• Cost grows polynomially up to some fidelity threshold, and then exponentially

• Very efficient when fidelity requirement is lower than threshold

Variants of Google circuit considered; the quantum supremacy circuit not yet attempted

How far can our approach go?

Inefficiencies observed in the algorithm & the implementation: over 100x

Flexible trade-off between time and space

Heavy preprocessing to find trees & slices

Scales linearly with number of samples

Summary

Focusing on making both classical and quantum useful!

The boundary between classical and quantum is moving & blurry

Improvements on both classical & quantum
Algorithmic/ complexity-theoretic

understanding of the task

Efficient parallelized tensor network contraction;
Quantum supremacy task in < 20 days

thanks

