A brief introduction to quantum error correction

Andrew S. Darmawan

Yukawa Institute for theoretical physics

July 2, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

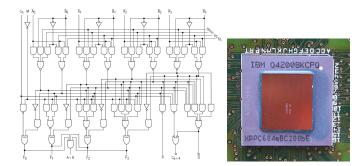
The big obstacle to building real-world quantum information technology is **noise**.

Quantum error correction is a proposed method to actively protect quantum information against noise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Classical computers

Classical computers: Basic unit of information is a bit {0,1}. Errors on bits due to physical noise during computation are extremely rare.



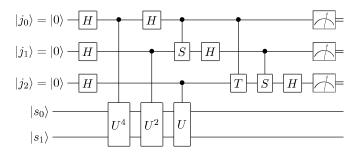
Quantum computers

Quantum computers: The basic unit of information is the qubit:

$$\alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle \tag{1}$$

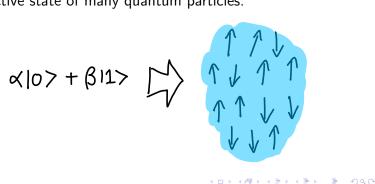
In current architectures, the probability of error per gate is at best $\sim 10^{-2}-10^{-3}.$ Errors will affect output.

Merely storing quantum information is difficult.



Quantum error correction

- Threshold theorem: Arbitrary long quantum computations can be efficiently performed with arbitrarily high accuracy provided the error rate is below some threshold value.
- This is possible due to Quantum error correcting codes, where a single logical qubit is encoded into the collective state of many quantum particles.



Quantum error correction: challenges

- It is not possible to copy arbitrary quantum states (no cloning theorem).
- Superpositions must be preserved (measurements can't collapse wavefunction)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Many types of error must be corrected.

Pauli operators

Single qubit Pauli operators:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$XZ = -ZX, \quad X^2 = Y^2 = Z^2 = I, \quad XZ = iY$$

٠

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Single qubit Pauli operators with the identity form a basis for 2 × 2 matrices.

Pauli operators

► (*n*-qubit) Pauli operators are formed by tensor products ⊗ⁿ_{i=1}P_i where P_i are single qubit Pauli operators and the identity matrix E.g.

$$X_1 Y_3 Z_4 := X \otimes I \otimes Y \otimes Z \tag{2}$$

- Eigenvalues of Pauli operators are ± 1 .
- Any two *n*-qubit Pauli operators either commute or anti-commute. E.g.

$$(X \otimes I)(Z \otimes Z) = XZ \otimes Z$$

= $-ZX \otimes Z = -(Z \otimes Z)(X \otimes I)$
 $(X \otimes X)(Z \otimes Z) = XZ \otimes XZ$
= $(-ZX) \otimes (-ZX) = (Z \otimes Z)(X \otimes I)$

Types of noise in quantum computers

Noise of a single qubit interacting with an environment

$$\rho \mapsto \sum_{k} E_{k} \rho E_{k}^{\dagger} \tag{3}$$

 $\alpha |0\rangle + \beta |1\rangle \to \alpha |1\rangle + \beta |0\rangle \tag{4}$

Types of noise in quantum computers

Noise of a single qubit interacting with an environment

$$\rho \mapsto \sum_{k} E_{k} \rho E_{k}^{\dagger} \tag{3}$$

• Common types of noise
• Bitflip:
$$(1 - p)\rho + pX\rho X$$

 $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |1\rangle + \beta |0\rangle$ (4)
• Phase flip: $(1 - p)\rho + pZ\rho Z$
 $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |0\rangle - \beta |1\rangle$ (5)

Types of noise in quantum computers

Noise of a single qubit interacting with an environment

$$\rho \mapsto \sum_{k} E_{k} \rho E_{k}^{\dagger} \tag{3}$$

• Common types of noise
• Bitflip:
$$(1 - p)\rho + pX\rho X$$

 $\alpha|0\rangle + \beta|1\rangle \rightarrow \alpha|1\rangle + \beta|0\rangle$ (4)
• Phase flip: $(1 - p)\rho + pZ\rho Z$
 $\alpha|0\rangle + \beta|1\rangle \rightarrow \alpha|0\rangle - \beta|1\rangle$ (5)
• Depolarising: $(1 - p)\rho + p/3(X\rho X + Y\rho Y + Z\rho Z)$

Simple example: Repetition code

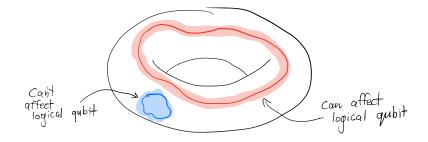
$$\alpha |0\rangle + \beta |1\rangle \to \alpha |000\rangle + \beta |111\rangle \tag{6}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Protects against bitflip errors.
- Does not protect against phase-flip errors.

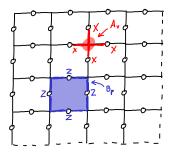
Topological error correction

- Practical: Only need nearest-neighbour interactions on a two-dimensional manifold.
- Only homologically non-trivial operators can affect encoded logical qubit. E.g. toric code/surface code
- ► Topological order: Homologically non-trivial observables cannot distinguish $|0_L\rangle$ and $|1_L\rangle$.



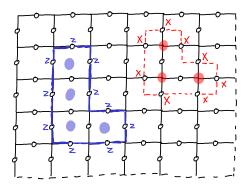
Toric code

- Physical qubits are arranged on the edges of an L × L square lattice with periodic (toric) boundary conditions.
- Set of commuting check operators $B_p = \bigotimes_{i \in p} Z_i$ and $A_v = \bigotimes_{i \in v} X_i$.
- Codespace is the simultaneous +1 eigenspace of all B_p and A_v operators.

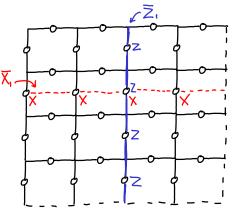


Toric code

- The check operators generate a group called the *stabilizer* S of the code.
- If $|\psi\rangle$ in the codespace and $g \in S$ then $g|\psi\rangle = |\psi\rangle$.
- Elements of the stabilizer are homologically trivial loops.

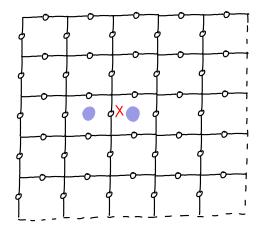


Logical operators

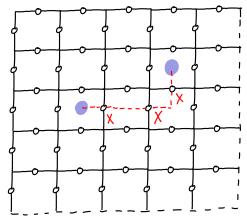


- The operators \overline{Z}_1 and \overline{X}_1 commute with every element in the stabilizer, but are not in the stabilizer.
- ▶ The logical qubit states $|0_L\rangle_1$, $|1_L\rangle_1$ are defined as the ±1 eigenstates of \overline{Z}_1 in the code space.
- \blacktriangleright \overline{Z}_2 and \overline{X}_2 wrap around the torus in the other way.

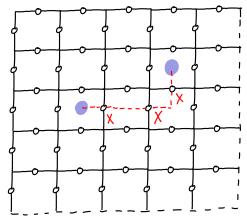
► A single X error flips adjacent plaquettes.



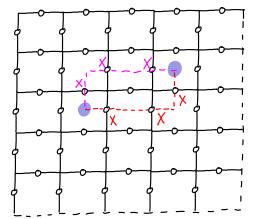
- A chain of X or Z errors will only flip the checks at the ends of the chain.
- The set of flipped checks is called they syndrome.



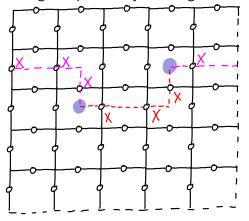
- A chain of X or Z errors will only flip the checks at the ends of the chain.
- The set of flipped checks is called they syndrome.



We can correct the error by matching the flipped checks (Z-checks with strings of Pauli X and vice versa).

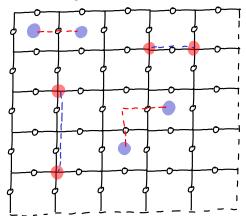


- However in doing so, it is possible to apply a non-trivial operation to the encoded qubits (a logical error).
- A classical decoding algorithm is used to choose which correction to apply. It's goal: return to the code space while minimising the probablity of a logical error.



Minimum-weight matching decoder

Minimum-weight matching: Consider B_p and A_v syndromes separately. For each apply a correction with smallest possible weight.



► Works well provided the number of errors is not too large.

Threshold

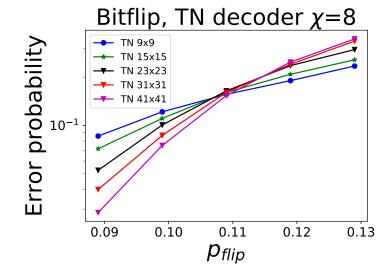
If the error rate is below certain value, called the threshold we can exponentially supress errors on the logical qubits by increasing the lattice size.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The threshold depends on a number of factors:
 - The code being used
 - The decoder
 - The type of noise

Results: Bitflip

 Each qubit has independent probability p_{flip} of being flipped.

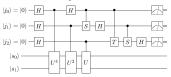


Full fault tolerance

- In the real world, gates, measurements, state-preparation are all imperfect and prone to errors.
- Remarkably, an error threshold exists even when all the operations in error correction are faulty.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Universal quantum computation



For universal quantum computation, it must be possible to perform a universal set of gates in a fault-tolerant way.

Figure: Performing gates by lattice surgery (From "A Game of Surface Codes: Large-scale Quantum Computing with Lattice Surgery" Litinski D. 2019)

Open problems

Error correction is extremely expensive: What can we do to lower the cost?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Reducing noise in hardware
- More efficient codes
- More efficient decoding

Summary

- Quantum error correction is a way to actively protect quantum information against noise.
- Quantum error correction involves encoding a single logical qubit into many physical qubits and performing operations that detect and correct errors.
- Quantum error correction is challenging: it requires a huge number of extra qubits and operations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References:

 Daniel Gottesman's course on QEC at Perimeter Institute 2007 and arXiv:0904.2557

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Lectures on Topological Codes and Quantum Computation by Dan Browne at UCL