
A brief introduction to quantum error

correction

Andrew S. Darmawan

Yukawa Institute for theoretical physics

July 2, 2020



The big obstacle to building real-world quantum
information technology is noise.

Quantum error correction is a proposed method
to actively protect quantum information against
noise.



Classical computers

I Classical computers: Basic unit of information is a bit
{0, 1}. Errors on bits due to physical noise during
computation are extremely rare.



Quantum computers

I Quantum computers: The basic unit of information is
the qubit:

α|0〉+ β|1〉 (1)

In current architectures, the probability of error per gate
is at best ∼ 10−2 − 10−3. Errors will affect output.

I Merely storing quantum information is difficult.



Quantum error correction
I Threshold theorem: Arbitrary long quantum

computations can be efficiently performed with arbitrarily
high accuracy provided the error rate is below some
threshold value.

I This is possible due to Quantum error correcting
codes, where a single logical qubit is encoded into the
collective state of many quantum particles.



Quantum error correction: challenges

I It is not possible to copy arbitrary quantum states (no
cloning theorem).

I Superpositions must be preserved (measurements can’t
collapse wavefunction)

I Many types of error must be corrected.



Pauli operators

I Single qubit Pauli operators:

X =

(
0 1
1 0

)
,Y =

(
0 −i
i 0

)
,Z =

(
1 0
0 −1

)
.

XZ = −ZX , X 2 = Y 2 = Z 2 = I , XZ = iY

I Single qubit Pauli operators with the identity form a basis
for 2× 2 matrices.



Pauli operators

I (n-qubit) Pauli operators are formed by tensor products
⊗n

i=1Pi where Pi are single qubit Pauli operators and the
identity matrix E.g.

X1Y3Z4 := X ⊗ I ⊗ Y ⊗ Z (2)

I Eigenvalues of Pauli operators are ±1.

I Any two n-qubit Pauli operators either commute or
anti-commute. E.g.

(X ⊗ I )(Z ⊗ Z ) = XZ ⊗ Z

= −ZX ⊗ Z = −(Z ⊗ Z )(X ⊗ I )

(X ⊗ X )(Z ⊗ Z ) = XZ ⊗ XZ

= (−ZX )⊗ (−ZX ) = (Z ⊗ Z )(X ⊗ I )



Types of noise in quantum computers

I Noise of a single qubit interacting with an environment

ρ 7→
∑
k

EkρE
†
k (3)

I Common types of noise
I Bitflip: (1− p)ρ+ pXρX

α|0〉+ β|1〉 → α|1〉+ β|0〉 (4)

I Phase flip: (1− p)ρ+ pZρZ

α|0〉+ β|1〉 → α|0〉 − β|1〉 (5)

I Depolarising: (1− p)ρ+ p/3(XρX + Y ρY + ZρZ )
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Simple example: Repetition code

α|0〉+ β|1〉 → α|000〉+ β|111〉 (6)

I Protects against bitflip errors.

I Does not protect against phase-flip errors.



Topological error correction
I Practical: Only need nearest-neighbour interactions on a

two-dimensional manifold.
I Only homologically non-trivial operators can affect

encoded logical qubit. E.g. toric code/surface code
I Topological order: Homologically non-trivial observables

cannot distinguish |0L〉 and |1L〉.
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Toric code
I Physical qubits are arranged on the edges of an L× L

square lattice with periodic (toric) boundary conditions.

I Set of commuting check operators Bp =
⊗

i∈p Zi and
Av =

⊗
i∈v Xi .

I Codespace is the simultaneous +1 eigenspace of all Bp

and Av operators.



Toric code

I The check operators generate a group called the stabilizer
S of the code.

I If |ψ〉 in the codespace and g ∈ S then g |ψ〉 = |ψ〉.
I Elements of the stabilizer are homologically trivial loops.



Logical operators

I The operators Z̄1 and X̄1 commute with every element in
the stabilizer, but are not in the stabilizer.

I The logical qubit states |0L〉1, |1L〉1 are defined as the ±1
eigenstates of Z̄1 in the code space.

I Z̄2 and X̄2 wrap around the torus in the other way.



Error-correction with the toric code

I A single X error flips adjacent plaquettes.



Error-correction with the toric code

I A chain of X or Z errors will only flip the checks at the
ends of the chain.

I The set of flipped checks is called they syndrome.
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Error-correction with the toric code

I We can correct the error by matching the flipped checks
(Z -checks with strings of Pauli X and vice versa).



Error-correction with the toric code
I However in doing so, it is possible to apply a non-trivial

operation to the encoded qubits (a logical error).
I A classical decoding algorithm is used to choose which

correction to apply. It’s goal: return to the code space
while minimising the probablity of a logical error.



Minimum-weight matching decoder
I Minimum-weight matching: Consider Bp and Av

syndromes separately. For each apply a correction with
smallest possible weight.

I Works well provided the number of errors is not too large.



Threshold

I If the error rate is below certain value, called the
threshold we can exponentially supress errors on the
logical qubits by increasing the lattice size.

I The threshold depends on a number of factors:
I The code being used
I The decoder
I The type of noise



Results: Bitflip
I Each qubit has independent probability pflip of being

flipped.
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Full fault tolerance

I In the real world, gates, measurements, state-preparation
are all imperfect and prone to errors.

I Remarkably, an error threshold exists even when all the
operations in error correction are faulty.



Universal quantum computation

I For universal quantum computation, it must be possible
to perform a universal set of gates in a fault-tolerant way.

Figure: Performing gates by lattice surgery (From ”A Game of
Surface Codes: Large-scale Quantum Computing with Lattice
Surgery” Litinski D. 2019)



Open problems

I Error correction is extremely expensive: What can we do
to lower the cost?
I Reducing noise in hardware
I More efficient codes
I More efficient decoding



Summary

I Quantum error correction is a way to actively protect
quantum information against noise.

I Quantum error correction involves encoding a single
logical qubit into many physical qubits and performing
operations that detect and correct errors.

I Quantum error correction is challenging: it requires a
huge number of extra qubits and operations.
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