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The big obstacle to building real-world quantum
information technology is noise.

Quantum error correction is a proposed method
to actively protect quantum information against
noise.



Classical computers

» Classical computers: Basic unit of information is a bit
{0,1}. Errors on bits due to physical noise during
computation are extremely rare.




Quantum computers

» Quantum computers: The basic unit of information is
the qubit:

al0) + f4[1) (1)

In current architectures, the probability of error per gate
is at best ~ 1072 — 1073, Errors will affect output.

» Merely storing quantum information is difficult.
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Quantum error correction

» Threshold theorem: Arbitrary long quantum
computations can be efficiently performed with arbitrarily
high accuracy provided the error rate is below some
threshold value.

» This is possible due to Quantum error correcting
codes, where a single logical qubit is encoded into the
collective state of many quantum particles.
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Quantum error correction: challenges

» It is not possible to copy arbitrary quantum states (no
cloning theorem).

» Superpositions must be preserved (measurements can't
collapse wavefunction)

» Many types of error must be corrected.



Pauli operators

» Single qubit Pauli operators:

(3 5)r=(9 )= (5 %)

XZ=-ZX, X*’=Y?*=27%°=1, XZ=iY

» Single qubit Pauli operators with the identity form a basis
for 2 x 2 matrices.



Pauli operators

» (n-qubit) Pauli operators are formed by tensor products
7, Pi where P; are single qubit Pauli operators and the
identity matrix E.g.

X\YV3Z, = XIY®Z (2)

» Eigenvalues of Pauli operators are +1.

» Any two n-qubit Pauli operators either commute or
anti-commute. E.g.

Xeh)(ZeZ)=XZ®Z

= ZX®Z=—(Z2)(X®I)
(X@X)N(Z®Z)=XZeXZ

=(-ZX)o (-Z2X)=(Zo Z)(X® 1)



Types of noise in quantum computers

» Noise of a single qubit interacting with an environment
pr> > EepEf (3)
K

» Common types of noise
» Bitflip: (1 — p)p+ pXpX

al0) + B[1) = af1) + 5|0) (4)
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Types of noise in quantum computers

» Noise of a single qubit interacting with an environment
pr> > EepEf (3)
K
» Common types of noise
» Bitflip: (1 — p)p+ pXpX
al0) + B[1) = af1) + 5[0) (4)
» Phase flip: (1 —p)p+ pZpZ
al0) + B|1) — al0) — 5l1) (5)

» Depolarising: (1 —p)p + p/3(XpX + YpY + ZpZ)



Simple example: Repetition code

a|0) + B]1) — «|000) + 3|111)

» Protects against bitflip errors.
» Does not protect against phase-flip errors.

(6)



Topological error correction

» Practical: Only need nearest-neighbour interactions on a
two-dimensional manifold.

» Only homologically non-trivial operators can affect
encoded logical qubit. E.g. toric code/surface code

» Topological order: Homologically non-trivial observables
cannot distinguish |0,) and [1;).
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Toric code

» Physical qubits are arranged on the edges of an L x L
square lattice with periodic (toric) boundary conditions.

» Set of commuting check operators B, = ), Z; and

AV = ®i€in'
» Codespace is the simultaneous +1 eigenspace of all B,
and A, operators.
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Toric code

» The check operators generate a group called the stabilizer
S of the code.

» If [¢) in the codespace and g € S then g|y) = |¢¥).
» Elements of the stabilizer are homologically trivial loops.




Logical operators

» The operators Z; and X; commute with every element in
the stabilizer, but are not in the stabilizer.

» The logical qubit states |0)1, |1,); are defined as the £1
eigenstates of Z; in the code space.

» 7, and X, wrap around the torus in the other way.



Error-correction with the toric code

» A single X error flips adjacent plaquettes.




Error-correction with the toric code

» A chain of X or Z errors will only flip the checks at the
ends of the chain.

» The set of flipped checks is called they syndrome.




Error-correction with the toric code

» A chain of X or Z errors will only flip the checks at the
ends of the chain.

» The set of flipped checks is called they syndrome.




Error-correction with the toric code

» We can correct the error by matching the flipped checks
(Z-checks with strings of Pauli X and vice versa).




Error-correction with the toric code

» However in doing so, it is possible to apply a non-trivial
operation to the encoded qubits (a logical error).

» A classical decoding algorithm is used to choose which
correction to apply. It's goal: return to the code space
while minimising the probablity of a logical error.




Minimum-weight matching decoder

» Minimum-weight matching: Consider B, and A,
syndromes separately. For each apply a correction with
smallest possible weight.
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» Works well provided the number of errors is not too large.



Threshold

» If the error rate is below certain value, called the
threshold we can exponentially supress errors on the
logical qubits by increasing the lattice size.

» The threshold depends on a number of factors:

» The code being used
» The decoder
» The type of noise



Results: Bitflip
» Each qubit has independent probability pg;, of being

flipped.
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Full fault tolerance

» In the real world, gates, measurements, state-preparation
are all imperfect and prone to errors.

» Remarkably, an error threshold exists even when all the
operations in error correction are faulty.



Universal quantum computation
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» For universal quantum computation, it must be possible
to perform a universal set of gates in a fault-tolerant way.
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Figure: Performing gates by lattice surgery (From "A Game of
Surface Codes: Large-scale Quantum Computing with Lattice
Surgery” Litinski D. 2019)



Open problems

» Error correction is extremely expensive: What can we do
to lower the cost?
» Reducing noise in hardware
» More efficient codes
» More efficient decoding



Summary

» Quantum error correction is a way to actively protect
quantum information against noise.

» Quantum error correction involves encoding a single
logical qubit into many physical qubits and performing
operations that detect and correct errors.

» Quantum error correction is challenging: it requires a
huge number of extra qubits and operations.



References:

» Daniel Gottesman’s course on QEC at Perimeter Institute
2007 and arXiv:0904.2557

» Lectures on Topological Codes and Quantum
Computation by Dan Browne at UCL



